
1. Introduction
1.1. Hydrologic Function and Dominant Processes

Within the hydrologic cycle, watersheds transport water from the land surface to its release as river flow, evap-
otranspiration (ET), or groundwater. This role is referred to as “watershed function” and can be divided into key 
categories, such as partitioning, storage, and release of water (Black, 1997; McDonnell & Woods, 2004; Wagener 
et al., 2007). For example, partitioning includes interception, infiltration, percolation, runoff, and return flow 
processes. Storage includes snow, unsaturated or saturated zone storage, perched or deeper aquifers, and lakes. 
Release of water includes ET, channel flow, and groundwater flow out of the watershed. Inherent in watershed 
process descriptions is the idea of “dominant processes.” Although watersheds might include a wide variety of 
processes under certain conditions, dominant processes are those most influential in controlling the hydrologic 
function and response (Grayson & Blöschl, 2001). For example, infiltration and saturation excess processes may 
both occur in a watershed, but the dominant process is the one that most strongly controls the magnitude and 
shape of the hydrograph.

There are many reasons to estimate the dominant processes in a watershed. Identifying the processes is a first step 
to developing models that provide physically realistic simulations (Grayson & Blöschl, 2001; Gupta et al., 2014). 
This is important given a new generation of hydrologic models with flexible structures that can simulate spatially 
variable processes, but may lack the corresponding spatial process knowledge (Clark et al., 2015). Watershed 
managers can apply process knowledge when designing interventions to intercept floodwater or prevent polluted 
runoff. More fundamentally, hydrologists seek to explain how climate, landscape, and critical zone features 
control watershed processes and runoff generation (Dunne, 1978; Fan et al., 2019; Sivapalan, 2006). To achieve 
these goals, accurate estimation of dominant processes is essential.
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1.2. Estimating Dominant Processes Using Regionalization and Modeling

Two main approaches have been used to estimate dominant processes: regionalization and modeling. In the 
regionalization approach, knowledge is used from other similar watersheds. For example, Peschke et al. (1999) 
propose a regionalization method based on their experience in two experimental watersheds. After a literature 
review of conditions that favor the process of interest, they examined hydrograph shapes in the target basin and 
compared these with nearby basins. They examined potential runoff contributions from different land covers 
based on water balance estimates. The approach culminated in a rules-based assessment of which processes are 
possible given hydrologic and landscape characteristics. This method was automated and applied in a mesos-
cale basin by Hellie et al. (2002) to create process-oriented subdivisions. A similar, decision-tree approach was 
created by Scherrer and Naef (2003) to identify processes in highly instrumented plots, providing a structured 
method to translate hydrologic observations into dominant process identification.

In the modeling approach, dominant processes are those which show the greatest sensitivity and improvement 
when incorporated into a model. Each candidate process can be added into the model in turn, and the model 
tested for improved performance (Sivakumar, 2008). At the same time, the dimensionality of the system can be 
analyzed to estimate how many processes are needed, although this approach cannot identify specific processes. 
Where a flexible modeling framework is used, alternative process representations can be switched in and out, and 
the dominant processes inferred as those with the highest posterior probabilities in a Bayesian analysis (Prieto 
et al., 2021, 2022). Alternatively, a model which already incorporates all the candidate processes can be used 
in a sensitivity analysis. Markstrom et al. (2016) undertook a U.S.-wide assessment of parameter sensitivity for 
the PRMS model. Model parameters were grouped by process, and for each hydrological response unit, domi-
nant processes were those with the highest sensitivity scores in their related parameters. This method was used 
to produce US-wide maps of process importance. Both regionalization and modeling approaches may suffer 
the same challenges as more conventional regionalization to select model parameter values based on landscape 
metrics. This method typically has weak results (Oudin et al., 2008), because processes can be highly variable 
even in superficially similar watersheds, and because model parameters may not represent the process they are 
supposed to.

1.3. Hydrologic Signatures Link to Processes

A promising approach to estimating dominant processes is through their link to hydrologic signatures. Signatures 
are quantitative metrics that describe statistical or dynamical features of streamflow timeseries, and are often used 
to assess model ability to simulate streamflow dynamics. Examples include annual flood, baseflow index, slope 
of the flow duration curve, and descriptors of recession shapes. Signatures are widely used in ecohydrology to 
summarize the flow regime, rate habitat suitability and assess hydrologic alteration (Olden & Poff, 2003; Yarnell 
et al., 2020). In hydrologic modeling applications, signatures can be used as a performance measure in calibration 
(Gupta et al., 2008; Kavetski et al., 2018) and to evaluate model structure (Hrachowitz et al., 2014). In ungauged 
basins, models can be calibrated against regionalized hydrologic signatures (Hrachowitz et  al.,  2013; Prieto 
et al., 2019). A recent review of hydrologic signatures and their applications is provided by (McMillan, 2021).

Some hydrologic signatures have well-understood links to processes in the upstream watershed, such as hydro-
graph recession shapes that can be derived from watershed storage-discharge behavior (Tallaksen, 1995). Work 
by Dunne (1978) and later, Kirkby (1988), discuss how climate, topography and soils control runoff generation 
processes, and how these processes lead to characteristic patterns of lag times and peak flows. Ecohydrology 
studies further demonstrate the link between watershed attributes and signatures values (Jowett & Duncan, 1990; 
Poff & Ward, 1989). Therefore, signature values can be used to understand the upstream watershed and assess 
dominant processes. Beighley et al. (2005) made a qualitative assessment of dominant processes based on total 
runoff ratio, hydrograph recession rate and flashiness, and change in event runoff ratio with season. They checked 
that the inferred processes were plausible given soil depth and impervious area, and added spatial data to under-
stand process distribution within the watershed. The processes were then included in a watershed model. Recently, 
Wu et al. (2021) inferred patterns of runoff generation processes in the U.S. by using six signatures to cluster 
watersheds into eight classes. Signature values in each class were used to identify the dominant processes as infil-
tration excess, saturation excess/subsurface stormflow, lateral preferential flow, or baseflow. The classes were 
linked to physical watershed characteristics using random forest modeling. Both these studies rely on proposing 
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links between signatures and processes, which then enable a regionalization-type approach to estimate dominant 
processes.

A catalog of signature-process links was created by McMillan (2020) who collected streamflow signatures and 
independent information on dominant processes in papers from 45 experimental watersheds around the globe. 
However, these links might be specific to particular climates or hydrologic regimes. To provide a sound basis 
for large-scale estimation of processes based on streamflow data, we must be sure that these links are consistent 
across watersheds. Some evidence for consistency exists, for example, storage-related signatures (baseflow index 
and watershed sensitivity to runoff) were consistently linked to regolith development (weathering and creation 
of clay lenses) across the U.S. Critical Zone Observatory (CZO) network (Wlostowski et al., 2020). However, 
further evidence is required to establish consistency of interpretation for a wide range of signatures and watershed 
characteristics.

1.4. Aims of the Paper

The aim of this paper is to determine whether links between streamflow generation processes and streamflow 
signatures are consistent across a large sample of watersheds, or to determine for which signatures and processes 
the links hold. We focus our analysis on signatures relating to baseflow/groundwater processes and overland flow. 
We test the signature-process links using two types of data. Using large-sample data sets from four countries, 
we test whether inter-signature correlations and climate-signature correlations conform with process knowledge. 
Using in-depth data from five experimental watersheds in the U.S., we test whether processes inferred from 
signatures match with process knowledge from the literature. Understanding if and where the signature-process 
relationship is consistent will enable us to choose robust and reliable signatures to estimate dominant processes 
from large databases of streamflow data.

2. Data
We used two sources of hydrologic data: large sample data from four countries and in-depth data from CZO 
watersheds. Watershed locations are illustrated in Figure 1.

Figure 1. Map of CAMELS watersheds colored according to their aridity index (PET/P) and locations of Critical Zone 
Observatorys (CZOs). Note that the maps of the countries are not to the same scale. Aridity index for CAMELS watersheds 
is taken from Addor et al. (2017) who used Daymet data from 1989 to 2009 and the Priestly Taylor method for PET; aridity 
index for CZO watersheds is taken from Wlostowski et al. (2020) who used NLDAS data from 2000 to 2015 and the Penman-
Monteith method for PET. Index values for CAMELS and CZO watersheds are therefore not directly comparable.
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2.1. CAMELS Data Sets

We used several CAMELS data sets to test whether large-scale correlations and patterns in signature values 
conform with process knowledge. CAMELS data sets are national or continental-scale data sets of daily stream-
flow and forcing climate variables for watersheds, mostly with low influence from human impacts. We used 
CAMELS data from the U.S. (Addor et  al.,  2017; Newman et  al., 2015), Great Britain (Coxon et  al., 2020), 
Australia (Fowler et al., 2021) and Brazil (Chagas et al., 2020), and hourly CAMELS U.S. rainfall data from 
Gauch et al. (2020, 2021). The catchments used range from a size of 4.4–4,720,020 km 2, with a median size of 
528.4 km 2.

We used CAMELS streamflow (Q), precipitation (P), and potential evapotranspiration (PET) data for water years 
1989–2009 and only kept watersheds with at least 99% complete records. Water years are defined as starting from 
1 October for the U.S. and Great Britain, 1 April for Australia, and 1 September for Brazil. A few watersheds 
had very small negative PET values, and those were set to zero. We removed watersheds with more than 30% 
of precipitation falling as snow, because event-based signatures in particular are unreliable under high snowfall 
conditions. Future options for including landscapes with significant snow could be to exclude snowmelt periods 
from the analysis (although current methods for determining spring snowmelt onset do not perform well in rivers 
with winter rains (Lundquist et al., 2004)); or to run a snow model to simulate soil water input, although this 
might lead to unwanted signature dependence on model characteristics. We also removed watersheds with signif-
icant flow regulation or diversions, based on the following criteria, noting that this had a very small impact on the 
results. The number of watersheds used is shown in brackets:

1.  CAMELS U.S.: we kept all watersheds as they are near-natural (546 watersheds).
2.  CAMELS Great Britain: we only used benchmark watersheds from the UK Benchmark Network (Harrigan 

et al., 2018), a subset of near-natural watersheds (120 watersheds).
3.  CAMELS Australia: we removed watersheds with a river disturbance index >0.2 (87 watersheds).
4.  CAMELS Brazil: we removed watersheds with consumptive_use_perc >5% and watersheds with regulation_

degree >10% (486 watersheds).

2.2. CZO Data Sets

Critical zone observatories are highly instrumented watersheds that are used to study interconnected hydrolog-
ical, physical, biological, and chemical processes at the Earth's surface. These observatories offer precipitation, 
climate and streamflow data, and extensive literature describing hydrological processes, which can be compared 
with processes inferred from signature values. We conducted a signature analysis at five CZO sites with a total 
of eight streamflow gauges: Eel River, California (Elder and Dry Creeks); Shale Hills, Pennsylvania (Shale Hills 
Creek); Luquillo, Puerto Rico (Rio Mameyes and Rio Icaros); Intensively Managed Landscapes (IML), Illinois/
Iowa (Upper Sangamon River); Santa Catalina, Arizona (Marshall Gulch and Oracle Ridge streams).

These observatories encompass a wide range of hydrological and climatological conditions, from arid, moun-
tainous landscapes in Arizona, to tropical forest in Puerto Rico, to a humid, steep watershed in Pennsylvania. 
The CZOs with paired sites offer the opportunity to compare signature values in contrasting sites under similar 
climate conditions. In particular, Elder and Dry Creeks, and Rios Mameyes and Icaros differ significantly in 
underlying geology. These five observatories were selected from the CZO network as those with less than 30% of 
precipitation falling as snow, matching the criterion used for the CAMELS watersheds.

For each site, raw data were processed into precipitation, streamflow, and PET time series with consistent hourly 
and daily timesteps, with the exception of Luquillo for which only daily data was available. Data were obtained 
from the Level 1 streamflow, precipitation, and meteorological data sets provided by Wlostowski et al. (2020), 
which comprise re-formatted versions of raw data. Data time periods varied by site, but comprised between 7 and 
20 years of data during the period 1995–2017. For Luquillo, we used Level 2 precipitation data sets that had been 
corrected based on annual totals (Wlostowski et al., 2020). For Eel River, additional streamflow and precipitation 
data for the neighboring Dry Creek were provided by D. Dralle (personal commication). Where multiple precip-
itation gauges were available, we calculated areal averages following the site-specific methods described by 
Wlostowski et al. (2020). Where necessary, we used daily streamflow values from the United States Geological 
Survey (USGS) gauges, disaggregated using linear interpolation, to infill missing hourly data. PET values were 
calculated from meteorological variables using the algorithm described by Zotarelli et al. (2010).
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3. Hydrologic Signatures
The signatures tested in this paper relate to baseflow/groundwater processes and overland flow (saturation 
and infiltration excess) and are taken from the McMillan  (2020) catalog. MATLAB codes to calculate these 
signatures were implemented as part of the Toolbox for Streamflow Signatures in Hydrology (TOSSH; Gnann 
et al., 2021a). The TOSSH toolbox provides standardized methods for hydrologic signature calculations, includ-
ing recommended parameter values. Minor changes from the original catalog were made to revise or remove 
three signatures for ease of interpretation (see Table S1 in Supporting Information S1). Full descriptions of the 
signatures calculated for this paper are given in Table 1 (17 signatures for groundwater/baseflow processes and 9 
signatures for overland flow processes), and their MATLAB code can be found at https://tosshtoolbox.github.io/
TOSSH/p2_signatures.html#process-based-signature-sets. Some of these signatures rely on common function-
ality, as follows. Several baseflow signatures use a function to identify recession periods; these were found as 
periods of decreasing streamflow (or allow increases of up to a small tolerance value), with a minimum length 
specified. Several overland flow signatures use a function to separate rainfall and flow series into individual 
events. Events are defined based on the rainfall time series, and occur when more than 2 mm/hr or 10 mm/day of 
precipitation fell, are separated into distinct events when 12 dry hours occur, and are deemed to end 5 days after 
rainfall end. Where overland flow signatures require values such as “flow volume” or “total precipitation,” these 
are calculated for the period of each event.

Several of the signatures require watershed-specific parameters, and their values are described in Table S2 in 
Supporting Information S1. We inspected TOSSH warnings to check for problems, typically due to default param-
eters being unsuitable for the watershed, or to data errors. Most TOSSH signatures offer a “plot_results” param-
eter for diagnostic graphical display of signature calculation and values. We used this option for CZOs and for 5 
randomly selected CAMELS watersheds per country to visually check the signature calculations (e.g., the fitted 
recessions). For the CZO watersheds, we made visual checks of the baseflow separation function, that base flow 
was adequately separated from quickflow during events. For the event identification function, we checked that 
the event periods cover major rainfall periods, and those event recession periods include flow peaks occurring 
immediately after rainfall. We checked that the recession identification function selected all major recession peri-
ods and adjusted recession selected parameters if required. For plots where threshold functions were fitted (e.g., 
to a plot of quickflow against antecedent condition metrics), we checked whether the fit was influenced by a few 
large or unusual rainstorms. For CZO watersheds, parameters were manually adjusted if found unsuitable, and for 
CAMELS watersheds—the large sample case where parameters were not individually adjusted—we retained the 
default parameters but discuss issues found in Section 6.2.

4. Signature Analysis
We used two approaches to test whether the links between signatures and processes described in McMillan (2020) 
hold true across multiple watersheds. The first approach used a large sample analysis of signature values across 
the CAMELS watersheds. For these data, we tested whether signatures related to the same process are correlated, 
and how signature values are related to climate aridity. The second approach used detailed analyses of signature 
values in CZO watersheds, to test whether processes inferred from signature values agree with information from 
watershed-specific literature.

4.1. Large-Scale Signature and Process Patterns in CAMELS Watersheds

4.1.1. Distribution of Signature Values

We applied the overland flow and groundwater signature sets across the CAMELS data sets to determine the 
distributions of values for each signature in each country. This enabled us to classify signature values in terms of 
their quantile values, that is, high or low compared to the median for their country, or quasi-globally. This infor-
mation is valuable for interpretation of the signatures in new watersheds, for example, to say whether a recession 
constant should be considered fast or slow.

4.1.2. Correlation Between Signature Values

Several of the signatures target the same or similar processes, for example, multiple signatures indicate high water 
storage in the watershed (Table 1). If these signatures represent the same process, we should find correlations 

https://tosshtoolbox.github.io/TOSSH/p2_signatures.html
https://tosshtoolbox.github.io/TOSSH/p2_signatures.html
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Signature Unit Description Technical definition Related process

Groundwater and baseflow signatures

 TotalRR – Total runoff ratio Mean streamflow divided by mean precipitation Evapotranspiration or other 
flow bypassing gauge 
(Safeeq & Hunsaker, 2016)

 EventRR – Event runoff ratio (average 
over all events)

Average of runoff ratios (streamflow divided by 
precipitation) calculated for all identified events; 
events are defined based on the precipitation 
time series (detailed explanation in text)

Low ratios show rapid vertical 
drainage of water to 
groundwater (Noguchi 
et al., 1997)

 RR_Seasonality – Runoff ratio seasonality 
(summer total RR/winter 
total RR)

Runoff ratio (streamflow divided by precipitation) 
calculated for summer months divided by runoff 
ratio calculated for winter months; winter is 
defined as the 6 months following the start of 
the water year

Low ratios show high bedrock 
permeability (Pfister 
et al., 2017)

 StorageFraction – Ratio between active and total 
storage

Active storage divided by total storage (storage 
terms are explained below)

Low ratios show permeable 
bedrock and high 
total storage (Pfister 
et al., 2017)

 ActiveStorage mm Active storage defined as 
maximum storage deficit

Storage deficit corresponding to the 99th percentile 
of the observed flow duration curve; storage 
deficit is calculated using a simple water 
balance model

Active watershed storage 
(Pfister et al., 2017)

 TotalStorage mm Total storage calculated by 
extrapolation to find 
storage deficit at near-zero 
flow

Fits an envelope line (tangent to the hysteretic loop 
between daily values of discharge and storage 
deficit) and extrapolates it to nearly zero-flow 
conditions (0.001 mm/day)

Total watershed storage 
(Pfister et al., 2017)

 Recession_a_Seasonality – Seasonal variations in 
recession “a” parameter, 
related to recession 
timescale

Assumes that recessions have a slope of 2 when 
dQ/dt is plotted against Q in log-log space, 
then calculates the y-intercept for all individual 
recession events, and returns the difference 
between the maximum and minimum monthly 
median y-intercept; recessions are defined as 
periods of decreasing streamflow (detailed 
explanation in text)

Impact of evapotranspiration 
on watershed storage 
(Shaw & Riha, 2012)

 AverageStorage mm Average storage derived 
from average baseflow 
and storage-discharge 
relationship

Uses a simple water balance model to calculate 
changes in storage, then finds the relationship 
between storage and discharge, and then 
estimates average storage from average baseflow

Average magnitude of 
watershed storage (Peters 
& Aulenbach, 2011)

 RecessionParameters_b – Recession analysis parameters 
(T0, b) approximate 
storage-discharge 
relationship. b is a shape 
parameter

Fits a line to the dQ/dt versus Q point cloud in 
log-log space for each individual recession and 
returns the median slope; recessions are defined 
as periods of decreasing streamflow (detailed 
explanation in text)

Storage-discharge relationship 
(Tallaksen, 1995)

 RecessionParameters_T0 d Characteristic timescale of 
recessions, at median flow

Fits a line to the dQ/dt versus Q point cloud in 
log-log space for each individual recession, with 
Q scaled by median Q. T0 is the median value 
of −1/intercept

Typical watershed 
response timescale 
(McMillan et al., 2014; 
Tallaksen, 1995)

 MRC_num_segments – Number of different segments 
in nonparametric master 
recession curve (MRC)

Fits successively more linear segments (maximum 
3) to a log-transformed MRC until the RMSE 
is reduced by <25% for an extra segment. 
MRC is derived using a new matrix-solution 
implementation of the adaptive matching strip 
method

Presence of multiple reservoirs 
contributing to flow (Clark 
et al., 2009)

Table 1 
Groundwater and Overland Flow Signatures Used in This Paper
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Table 1 
Continued

Signature Unit Description Technical definition Related process

 BFI – Baseflow index, that is, 
fraction of flow classified 
as baseflow

Mean baseflow divided by mean streamflow; 
baseflow is estimated using the UKIH smoothed 
minima method (UKIH, 1980)

Baseflow proportion and 
baseflow residence time 
(Bulygina et al., 2009; 
Yilmaz et al., 2008)

 BaseflowRecessionK 1/d Exponential recession constant 
fitted to master recession 
curve (MRC)

Fits exponential function to MRC and returns 
the time constant; MRC is derived using the 
adaptive matching strip method

Low values show greater 
groundwater influence and 
longer subsurface flow 
paths (Safeeq et al., 2013)

 First_Recession_Slope 1/d Steep section of MRC, related 
to storage that is quickly 
depleted

Fits a straight line to the first segment of the 
log-transformed MRC (steep part; segments as 
defined by MRC_num_segments) and returns 
its slope

Storage near the soil surface 
that is quickly depleted 
(Estrany et al., 2010)

 Mid_Recession_Slope 1/d Mid-section of MRC, related 
to water retention capacity 
of the watershed

Fits a straight line to the second segment of the 
log-transformed MRC (segments as defined by 
MRC_num_segments) and returns its slope

Water retention capacity of 
the watershed (Estrany 
et al., 2010)

 EventRR_TotalRR_ratio – Ratio between event and total 
runoff ratio

EventRR divided by TotalRR Low event runoff coefficients 
and high yearly runoff 
coefficients show large 
storage capacity (Blume 
et al., 2008)

 VariabilityIndex – Variability index of flow Standard deviation of log-transformed discharge 
values determined at 10% intervals from 10% 
to 90% of the cumulative frequency distribution 
(flow duration curve)

Low variability index shows 
higher water storage 
(Estrany et al., 2010)

Overland flow signatures

 IE_effect – Infiltration excess importance Average of the standardized z-score coefficients 
for mean and maximum event intensity in 
regression equations to predict event peak 
magnitude and quickflow volume

Infiltration excess occurrence 
and relative importance 
compared to saturation 
excess (Estrany 
et al., 2010)

 SE_effect – Saturation excess importance Average of the standardized z-score coefficients 
for total event precipitation and 3 and 7-day 
antecedent precipitation totals in regression 
equations to predict event peak magnitude and 
quickflow volume

Saturation excess occurrence 
and relative importance 
compared to infiltration 
excess (Estrany 
et al., 2010)

 IE_thresh_signif – Infiltration excess threshold 
significance

P-value for the significance of a non-zero change in 
slope above and below a threshold in a plot of 
event quickflow volume versus event maximum 
intensity. Slopes are calculated using a “broken 
stick” fit to minimize squared errors

Significant values (<0.05) 
imply infiltration excess 
occurs (Ali et al., 2013)

 SE_thresh_signif – Saturation excess threshold 
significance

P-value for the significance of a non-zero change 
in slope above and below a threshold in a plot 
of event quickflow volume versus event total 
precipitation. Slopes are calculated using a 
“broken stick” fit to minimize squared errors

Significant values (<0.05) 
imply saturation excess 
occurs (Ali et al., 2013; 
McGrath et al., 2007)

 IE_thresh mm/time-step Infiltration excess threshold 
depth (intensity of 
precipitation needed to 
produce quickflow)

Value (location) of the threshold identified in the 
IE_thresh_signif signature

Rainfall intensity required to 
generate infiltration excess 
(Ali et al., 2013)

 SE_thresh mm Saturation excess threshold 
location (depth of 
precipitation needed to 
produce quickflow)

Value (location) of the threshold identified in the 
SE_thresh_signif signature

Event precipitation depth 
required to generate 
saturation excess (Ali 
et al., 2013; McGrath 
et al., 2007)
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between their values. We therefore created a correlation matrix showing rank correlations between each pair of 
signatures. Spearman rank correlation was used as a nonparametric correlation measure, as relationships between 
signatures may not be linear. We assessed whether signatures that represent the same or similar processes have 
high correlations (where we used a subjective threshold of 0.7 or greater to indicate high correlation).

4.1.3. Hydro-Climate Relationship to Signature Patterns

Climate is a strong control on many signatures (Knoben et al., 2018). In particular, the aridity index (PET/P) has 
shown strong (empirical) links to many signatures (Addor et al., 2018). We therefore investigated to what extent 
aridity explains observed signature patterns and whether these patterns are consistent across different countries. 
We calculated rank correlations and plotted signature values against the aridity index, separated by country. The 
results will serve as a first assessment of similarity in signature controls across countries, therefore showing how 
transferable our results might be.

4.2. Signature-Process Links at Critical Zone Observatories

We based our analysis of signature-process links in CZOs on the summary findings of McMillan (2020; their 
Table 1), with an overview in Table 1, this paper. We reorganized their findings into a series of questions about 
processes in the watershed that could potentially be answered from literature descriptions, and matched the 
signature values that relate to each question, for example, “Do riparian zones contribute to flow?” a positive 
answer implies that there is no rainfall depth threshold before flow occurs, that is, SE_thresh is close to 0 and/or 
SE_thresh_signif >0.05 (see Results in Section 5.2 for the full list of questions, corresponding signature values, 
and answers). Restructuring the analysis in this way allowed for multiple signatures relating to one process. For 
each observatory, we collected journal articles describing the watershed processes, and used these to answer the 
questions. In several cases, the observatories included contrasting sub-watersheds, and process information was 
collected about each one.

We calculated signature values for all signatures described in Section 3. Where hourly data were available (i.e., all 
CZOs except Luquillo), we calculated signatures at both hourly and daily timesteps. We compared the impact of 
timestep choice and noted cases where signature values depend strongly on timestep. We used the distributions of 
signature values described in Section 4.1.1 to assign a percentile to each value, within the distribution of values 
across the CAMELS U.S. data set. We chose to use only the U.S. data set to quantify percentiles, as we assume 
that descriptions of processes as being of high or low importance are most likely to implicitly imply a comparison 
against other U.S. watersheds.

Table 1 
Continued

Signature Unit Description Technical definition Related process

 SE_Slope mm/mm Above-threshold slope in a 
plot of quickflow volume 
versus total precipitation

The above-threshold slope of the broken-stick fit in 
the SE_thresh_signif signature

Rate at which saturated areas 
expand with additional 
rainfall (Tani, 1997)

 Storage_thresh_signif – Storage threshold significance P-value for the significance of a non-zero change 
in slope above and below a threshold in a plot 
of event quickflow volume versus event total 
precipitation + antecedent precipitation index. 
Slopes are calculated using a “broken stick” fit 
to minimize squared errors

Significant values (<0.05) 
imply saturation excess 
occurs (Ali et al., 2013; 
McGrath et al., 2007)

 Storage_thresh mm Storage threshold location 
(storage depth needed to 
produce quickflow)

Value (location) of the threshold identified in the 
Storage_thresh_signif signature

Storage depth proxy 
(API + event precipitation 
depth) required to generate 
saturation excess (Ali 
et al., 2013; McGrath 
et al., 2007)

Note. Technical information on how signatures are calculated is drawn from Gnann et al. (2021a). Information on the processes related to each signature, and reference(s) 
establishing those interpretations, are drawn from McMillan (2020).
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We then placed each question-signature pair into one of three categories: good agreement, mixed agreement, 
or poor agreement between signature and described process. For CZOs with multiple watersheds with contrast-
ing properties, we assessed whether differences in signatures between these watersheds correspond to known 
contrasts in hydrologic processes.

5. Results
5.1. Large-Scale Patterns and Distributions

We calculated signature values across each CAMELS data set. Maps for the four regions and for eight represent-
ative signatures are shown in Figures S1–S8 in Supporting Information S1.

5.1.1. Distribution of Signature Values

The distributions of each signature for each CAMELS data set are shown in Figure 2. These distributions calcu-
lated using large samples can be used to assess empirically whether signature values should be considered high 
or low. The percentiles of each signature are given in Tables S3 and S4 in Supporting Information S1. Some 
signatures have clearly defined limits (e.g., BFI), while others such as watershed storage (AverageStorage) have 
no upper limit. We found that distributions can vary substantially between countries, such that a high signature 
value in one country might not be considered high in another country. For example, low values of the BFI in 
Brazil (BFI of 0.59 falls on the 25th percentile) would be considered average in the U.S. (BFI of 0.58 falls on the 
50th percentile), Great Britain (BFI of 0.63 falls on the 50th percentile), and Australia (BFI of 0.53 falls on the 
50th percentile).

5.1.2. Correlation Between Signature Values

To test whether signature correlations aligned with proposed physical interpretations of the signatures, we looked 
for examples where multiple signatures related to the same feature of a flux or store: that is, its magnitude, 
spatial variation, temporal variation, or response time. See Table 1 for a list of signatures and their corresponding 
processes, with references establishing those interpretations. The signature correlations across all four CAMELS 
data sets are shown in Figure 3.

Watersheds with high baseflow magnitude and long baseflow response time are supposed to be characterized by 
high BFI and low BaseflowRecessionK. This is correctly represented by a strong correlation (−0.88) between the 
two signatures. We note a strong correlation between BFI and VariabilityIndex (−0.80), suggesting that Variabil-
ityIndex is related to baseflow magnitude more than storage as originally proposed (Estrany et al., 2010). There 
are further strong correlations between BaseflowRecessionK, RecessionParameters_T0 (−0.74) and Mid_Reces-
sion_Slope (0.75), all of which relate to the response time of the watershed. These high correlations between BFI 
and multiple other signatures provide evidence for the common use of BFI as an overarching measure of base-
flow importance (Figure 3a). However, the high correlation of baseflow magnitude and response time signatures 
means that the signatures do not provide a robust method to separate these two aspects of baseflow. Using multi-
ple BFI signatures with different time windows would help to resolve this issue (Gnann, McMillan, et al., 2021).

Several signatures are supposed to be related to the magnitude of groundwater storage (Table 1), including Aver-
ageStorage, ActiveStorage, TotalStorage, and RR_Seasonality. High positive correlations occur between ActiveS-
torage, AverageStorage (0.77) and TotalStorage (0.86), confirming this interpretation. A lower correlation with 
RR_Seasonality (0.49) suggests that this signature is also influenced by processes other than storage. Small values 
of event runoff ratio (EventRR) and its fraction of total runoff ratio (EventRR_Total_RR_ratio) are supposed to 
signify fast drainage to groundwater and high storage capacity of the watershed (e.g., permeable bedrock), but 
this is not supported by the data. Instead, we found that these signatures are most highly correlated with total 
runoff ratio (correlations of 0.96 and 0.42), suggesting that they are controlled by losses to ET or deep ground-
water as part of the overall water balance. The StorageFraction signature should relate to storage magnitude but 
was found to be unreliable, often giving unrealistic values and a poor fit when plotted against the underlying data. 
This signature was originally developed for a set of 16 watersheds in Luxembourg (Pfister et al., 2017), but modi-
fication or generalization of the signature would be needed for it to translate well to other watersheds.

The signature MRC_num_segments (number of segments in the master recession curve) has notably low correla-
tions with all other signatures, including RecessionParameters_b (nonlinearity in the shape of recession curve) as 
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shown in Figure 3a. Its highest correlation is 0.27 with Mid_Recession_Slope. This is likely due to MRC_num_
segments being an ordinal signature that can only take values of 1, 2, or 3, and therefore provides less information 
about the relative values of different watersheds.

For overland flow, we expected negative correlations between saturation excess importance (SE_effect) and the 
significance P-value of its threshold (SE_thresh_signif) and similarly for infiltration excess importance (IE_effect) 
and the significance P-value of its threshold (IE_thresh_signif). In other words, for watersheds with saturation 
excess process (where regression coefficients related to event precipitation depth most strongly predict quickflow 
volume and peak), there will be a threshold in a plot of event precipitation depth and quickflow volume. For 

Figure 2. Distributions of (a) groundwater signatures and (b) overland flow signatures, smoothed using a kernel density estimation. Exceptions are MRC_num_
segments, which can only take three values and is thus shown as a bar plot, and IE/SE/Storage_thresh_signif whose values cluster at 0 and 1, and are shown as 
histograms with a value at zero and other values on a log-axis. Plot ranges are adjusted for better visibility.
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watersheds with infiltration excess process (where regression coefficients related to event precipitation intensity 
most strongly predict quickflow volume and peak), there will be a threshold in a plot of event precipitation inten-
sity and quickflow volume. This holds true for IE_effect (correlation −0.62). For SE_effect, the correlation is 
weak (−0.2), suggesting that event precipitation depth can control flow peak and volume but without a threshold 
in the relationship (Figure 3b). The data also show that threshold size and significance are negatively correlated 
(IE_thresh_signif has a correlation of −0.81 with IE_thresh and SE_thresh_signif has a correlation of −0.61 
with SE_thresh), showing correctly that the signature algorithm will not identify a large threshold if it is not 
significant. Although not predicted in advance, we found that all the threshold sizes (IE_thresh, SE_thresh, and 
Storage_thresh) are strongly positively correlated. High values identify watersheds that require a lot of water to 
start producing flow, whether this be via infiltration or saturation excess mechanisms.

Overall, we find that expected relationships in baseflow and overland flow signatures hold in general, with a few 
exceptions as noted above.

5.1.3. Hydro-Climate Relationship to Signature Patterns

Aridity is correlated only with a few signatures (e.g., runoff ratios, see Figure 4a) when all CAMELS watersheds 
are lumped together (see Figures S9 and S10 and Tables S5 and S6 in Supporting Information S1 for all signa-
tures). This changes when countries are investigated separately. For instance, the IE_effect signature has a  strong 
correlation with aridity in Great Britain (rank correlation −0.92), while overall it shows only a very weak corre-
lation (rank correlation −0.24), see Figure 4b. Sometimes, the relationships even have opposite signs, as is the 
case for the BFI in Great Britain and Australia, see Figure 4c. As we expected, these results show that signatures 
are not solely controlled by climate, but also by other watershed characteristics (e.g., soils and geology). The 
results may further point to climate-signature relationships from individual countries giving small windows into 
an underlying distribution; in this case, BFI might have a nonlinear relationship with aridity, maximized for inter-
mediate values. Our results demonstrate that relationships between climate characteristics and signatures from a 

Figure 3. Correlations between (a) groundwater signatures and (b) overland flow signatures for all four CAMELS data sets.
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single country should not be assumed to hold in other countries. For example, the relationships of signatures to 
climate and catchment attributes found in the CAMELS U.S. data set (Addor et al., 2018) might not hold for other 
countries. This result shows the benefits of using multi-continent data sets to understand overarching drivers of 
signature patterns.

5.2. Signature-Process Links at Critical Zone Observatories

As described in Section 4.2, we collected literature from each CZO to answer each process question, and calcu-
lated the values and percentiles of each signature matched to that question. This information allowed us to 
describe the signature-process agreement in text, and ascribe good, partial, or poor agreement between each pair. 
For these well-studied watersheds, most of the process questions could be answered by searching the literature, 
but there were some gaps (white cells in the table). A full spreadsheet showing all signature values (with data at 
hourly and daily timestep), percentiles, descriptions of each process, and key references for each CZO watershed 
is given in the GitHub repository (see Data Availability Statement section). A summary showing signature-pro-
cess agreement is shown here (Figure 5).

In general, there was good agreement between the processes interpreted from literature and the corresponding 
signatures (blue-green in Figure 5). Overall, groundwater signatures (71% agreement, 20% partial agreement, 8% 
poor agreement) were more reliable than overland flow signatures (46% agreement, 28% partial agreement, 26% 
poor agreement).

Good matches between signatures and processes occur in Eel River, Shale Hills, and Luquillo CZOs. Eel River 
in Northern California has two contrasting sub-watersheds, Elder Creek with high groundwater storage, and Dry 
Creek with low groundwater storage and frequent saturation excess flow (Lovill et al., 2018; Oshun et al., 2016). 
Groundwater signatures accurately represent the contrasts in storage and seasonality. However, SE flow in Dry 
Creek is incorrectly identified as IE at daily timescale, and BFI is moderate (not high as expected) in Elder 
Creek, representing a compromise between the Mediterranean climate that favors low baseflow and high storage 
that favors high baseflow. Shale Hills in Pennsylvania lies on sedimentary geology in the Appalachian Moun-
tains (Brantley et al., 2018). In wet conditions, rising water tables generate interflow with a transmissivity-feed-
back mechanism (Scaife et  al., 2020). Deep groundwater and surface flow are smaller components (Brantley 
et  al.,  2018; Li et  al.,  2018), although saturated riparian areas generate flow (Lin & Zhou,  2008; Takagi & 
Lin, 2012). Signatures and processes agree across almost all overland flow and groundwater processes, predict-
ing low storage and BFI, fast recessions, a storage threshold for flow, seasonal ET influence, and low/moderate 
surface flow. Luquillo watersheds in Puerto Rico comprise tropical, montane forest, with Rio Icaros (granitoid) 
and Rio Mameyes (volcaniclastic) on contrasting geologies (McDowell et  al.,  1996). Fast/shallow processes 
dominate despite deep soils, with event water flowing as a perched water table (Schellekens et al., 2004; Shanley 
et al., 2011). Signatures and processes mostly agree, predicting fast processes (high event runoff coefficient and 
steep initial recessions), a storage threshold for flow, low seasonality, and no clear IE or SE dominance. Granitoid 

Figure 4. Relationships between (a) TotalRR and aridity (PET/P) for all CAMELS countries, (b) between IE_effect and aridity for all CAMELS countries, and (c) 
between BFI and aridity for Great Britain and Australia.
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Icaros correctly has higher BFI and lower Recession K than Mameyes, but for both rivers the recession parame-
ters incorrectly merge fast event processes with a small but sustained baseflow component.

Poorer matches between signatures and processes occur in IML and Santa Catalina CZOs. The IML Upper Sanga-
mon watershed in Illinois is in row-crop agriculture with tile drains (Kumar et al., 2018; Schilling et al., 2018). 
SE and IE flow are both reported in the literature, but with IE dominant (Abban et al., 2014; Davis et al., 2014; 
Wilson et al., 2012). Groundwater rises quickly after events and runs off via tile drains (Kim et al., 2020; Schil-
ling & Helmers, 2008; Wilson et al., 2018). Groundwater signatures and processes mostly agree, with low event 
runoff ratio suggesting drainage to groundwater, and low storage signatures suggesting that this groundwater 
drains quickly to the stream. However, overland flow processes are incorrectly identified as dominated by SE, 
with IE found not significant although it is known to occur. The Santa Catalina watersheds in Northern Arizona 
are arid, mid to high-elevation sites. Heavy summer monsoon storms produce overland and near-surface flows 
dominated by event and soil water (Desilets et al., 2008; Dwivedi et al., 2019). IE dominates, with some near-
stream SE (Lyon et al., 2008). Streams gain some water from deep/regional groundwater (Dwivedi et al., 2019). 
Signatures and processes often disagree; signatures incorrectly suggest that saturation and storage processes 
dominate, and very low runoff ratios make interpretation difficult. However, moderate BFI and recession K agree 
with the limited but important groundwater contribution.

6. Discussion
In this paper, we applied hydrological signatures and assessed their process interpretations in a diverse set of 
basins, in many cases well outside of the hydroclimatic regimes for which the signatures were designed. There-
fore, we gained many useful insights into signature use.

6.1. Benefits of Calculating Signature Distributions

To interpret signature values as “high” or “low,” it was essential to know the distributions of signature values 
(Figure 2). For example, SE_effect values (saturation excess importance) are consistently higher than IE_effect 
values (infiltration excess importance), so these values are interpreted differently. It was therefore useful to pres-
ent the signature value as a percentile of the national distribution rather than an absolute value. We recommend 
a comparison with regional rather than global distributions when transferring knowledge about links between 
signatures and processes (e.g., where a high signature value indicates a dominant process), as we hypothesize 
that authors implicitly compare processes within the same region. For example, a low BFI in Brazil might be 
considered an average BFI in the U.S. Understanding signature distributions and their spread (e.g., variance) 
is important when using signatures to assess watershed similarity, as it enables us to calculate how similar two 
signature values are, for example, within the same decile of the distribution.

Analyzing signature values on a national scale was also useful when understanding correlations of signatures 
with aridity. We found examples where a correlation that occurs for the combined set of four CAMELS data sets 
does not hold for individual countries. Strong but diverging correlations (e.g., BFI, see Figure 4c) might point 
at relationships that are not causal. For instance, the most productive aquifers in Great Britain happen to be in 
the least humid places, so a correlation between aridity and BFI here might be a coincidence, and this could be 
the reason why it does not hold for other countries. Understanding such regional differences in relationships is 
essential for prediction of signatures in ungauged basins, which is used in applications that regionalize signatures 
to ungauged basins, and then use those signature values as a performance measure to calibrate a rainfall-runoff 
model. One approach to this is to group sites by region or climate before analyzing the physiographic drivers of 
signature values within each group, as used in recent studies of non-perennial rivers and river flashiness (Gannon 
et al., 2022; Hammond et al., 2021).

6.2. Signature Robustness

Large sample signature calculations pose several challenges. Some signatures are straightforward to calculate 
(e.g., TotalRR), or have been widely used (e.g., BFI) and are relatively robust. Some watershed types may prove 
more susceptible to uncertainties or difficulties in signature calculation, such as leaky watersheds that cause 
errors in estimated ET (Wlostowski et al., 2020). Signatures that have only been used in a few small scale studies, 
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or are sensitive to parameter selections (e.g., recessions, see Dralle et al., 2017; Stoelzle et al., 2013) are less 
robust for large samples. Their results might not be reliable, even though the values might be within a realistic 
range. For example, the monsoonal climate in some parts of Brazil leads to a distinct seasonal flow regime, with 
many short recessions during the wet season and a long recession during the dry season (Figure 6). This is not 
picked up by the recession signatures we used, as they return a single (average) storage-discharge relationship. It 
is thus important to check visually whether the signature results are reasonable, and to test signatures when trans-
ferring them to other scales or other places. It is then possible to tailor the signatures to certain regions, for exam-
ple, by dividing the time series according to season (Euser et al., 2013). Quantifying the sources and magnitudes 
of uncertainty that impact signature values is necessary for many applications (Westerberg & McMillan, 2015). 
For example, uncertainty information is needed when using signatures as metrics for model calibration (where 
uncertainty information is used in the likelihood function), regionalizing signatures and their uncertainties for 
flow prediction in ungauged basins (Prieto et  al.,  2019; Westerberg et  al.,  2016), or using signature changes 
through time to assess hydrologic alteration (Vigiak et al., 2018).

Although we expected hourly data to provide more accurate estimates of event characteristics and recession 
dynamics in small watersheds, we found that working with hourly data required a hands-on approach to prevent 
errors. This included changing recession selection tolerance due to diurnal flow fluctuations, and filling gaps in 
timeseries; for example, USGS flow data is usually infilled at the daily timescale, but not for hourly data. Such 
interventions cause hourly signature values to be more uncertain, trading off accuracy and data processing time. 
We suggest comparing hourly and daily signature values, and identifying reasons for significant differences. In 
the arid Santa Catalina CZO, hourly data gave poor results that did not match literature information on processes. 
We do however recommend hourly data for identifying overland flow processes, as it produced results that better 

Figure 6. (a) Hydrograph of a watershed in Brazil that shows very seasonal (monsoonal) precipitation and thus streamflow. 
(b) The corresponding master recession curve flattens out for late recessions, indicating the transition from wet season 
recessions to dry season recessions. (c) The same can be seen from the dQ/dt plot where dry season recessions are 
systematically steeper.
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matched field observations, and were often substantially different from daily results. For example, the IE_effect 
and SE_effect signatures represent the importance of infiltration and saturation excess processes. At Dry Creek 
in Eel River CZO, saturation excess is known to dominate (Lovill et al., 2018). With daily data, IE_effect is 0.46 
(96% quantile), and SE_effect is 0.47 (9% quantile); while with hourly data, IE_effect is 0.34 (87% quantile) and 
SE_effect is 0.65 (58% quantile). Therefore hourly data more close represents the SE dominance. At Shale Hills, 
some surface flow is known to occur, although infiltration versus saturation excess processes are not described 
(Brantley et al., 2018). If daily data is used, neither IE nor SE flow are indicated (IE_effect = 0 (9% quantile), 
SE_effect = 0.42 (6% quantile)), while with hourly data, moderate SE_flow is indicated (IE_effect = −0.09 (3% 
quantile), SE_effect = 0.61 (43% quantile)). Therefore, hourly data provides a better match to observations. This 
finding confirms that of Wu et al. (2021) who found that hourly precipitation data was preferred when calculating 
signatures for infiltration excess. Some large scale data sets have hourly data available, for example, CAMELS in 
the U.S. (Gauch et al., 2021) and LamaH-CE in Central Europe (Klingler et al., 2021), and we therefore recom-
mend using the hourly versions if investigating infiltration excess processes.

6.3. Lessons From Comparisons of Signatures and Processes for CZOs

We found some challenges in the CZO watersheds when comparing signature values to process descriptions. It 
could be difficult to obtain standardized process data, such as depth to bedrock which was sometimes quantified 
differently by different authors, even in the same watershed. We sometimes found conflicting information, such 
as in the IMLs CZO, where saturation excess flow was said to occur, but the water table was said to be low due 
to tile drains. Such conflicts could be due to differences in exact location, or in wetness conditions at the time 
of observation, and illustrate the difficulties in summarizing complex understanding of the landscape. Similarly, 
some signature values failed to capture the full insights of field studies, such as in Shale Hills CZO that has a 
known discharge of old (20–30 years) water to the stream, but which comprises only a small percentage of flow 
(Li et al., 2018). Although previous studies have linked high BFI and low BaseflowRecessionK to groundwater 
residence time (Bulygina et al., 2009; Safeeq et al., 2013), in this case the BFI signature value is low (due to the 
small volume of old water) and so does not indicate the old water discharge.

Some processes were less reliable in their match to signature values across multiple CZOs. In particular, IE and 
SE processes (first three rows in Figure 5) were not well differentiated. For example, SE is known to dominate 
in Dry Creek in the Eel River CZO, but signatures show IE; whereas IE is known to dominate in IML CZO, 
but signatures show SE. Additionally, watersheds differed in their reliability, for example, Shale Hills showed 
high reliability across all signatures with no disagreements. In the arid but high-elevation Santa Catalina CZO, 
the reliability of signatures based on events and recession periods was reduced, because only a small number of 
storms produced flow, and some of these were impacted by snow. The IML CZO, where the hydrology reflects 
significant human impacts in cropped areas, showed low reliability for overland flow signatures. The low relia-
bility could be due to high variability in processes between impacted and non-impacted areas of the watershed, 
as overland flow signatures face a scale conflict between location-specific observations of flow, and signature 
values that reflect integrated watershed response. Low reliability could also be due to human impacts such as tile 
drains. The tile drain response could mimic saturation excess processes if the water table rises high enough to 
intersect the tile drain layer, providing a fast pathway from groundwater into the channel. Signatures are known to 
be modified by human activities, such as baseflow index being affected by groundwater abstraction and effluent 
discharges to rivers (Bloomfield et al., 2021), but were not originally designed for use in human-impacted water-
sheds. The gaps found here in signature availability and accuracy suggest opportunities to develop signatures 
targeted at deep groundwater contributions for ecohydrology studies, or targeted at human impacts to assess 
drivers of hydrologic alteration.

6.4. Comparison With Previous Studies

It is useful to compare our results with previous studies that related process descriptions to signature values. For 
overland flow processes, Wu et al. (2021) identified infiltration and saturation excess using Spearman correlations 
between event runoff ratios and rainfall intensity, rainfall volume and rainfall storage. They found few watersheds 
with dominant infiltration excess, agreeing with previous findings that IE flow is rare in the U.S. (Buchanan 
et al., 2018; Wolock, 2003). However, there are substantial differences in spatial patterns of IE between our study 
and these previous studies, and among the previous studies. One explanation for high uncertainty is that overland 
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flow signatures are sensitive to calculation methods, particularly whether hourly or daily rainfall intensity is used, 
and require multiple choices including baseflow separation, event definition, and storage calculation methods. 
Our IE_effect and SE_effect signatures are based on a study by Estrany et al. (2010) in a Mediterranean water-
shed, but may not function correctly in other climates, as also evidenced by the unexpected positive correlation 
between wetness and IE_effect in daily CAMELS-GB data. Our IE_thresh and SE_thresh signatures were more 
consistent with previous studies and process knowledge, particularly when using hourly rainfall intensity. They 
showed positive infiltration excess thresholds in arid and Southeastern U.S., where infiltration excess is expected 
to occur, and positive saturation excess thresholds in most of the U.S. except the arid West and in the North East 
where antecedent conditions may outweigh event volume. In summary, IE_effect and SE_effect signatures are not 
reliable, and future work is needed to design and test signatures that better differentiate these processes.

For groundwater processes, we can compare our results with those of Wlostowski et al. (2020), who studied how 
critical zone architecture controls signature values. Our results agree with theirs in finding that baseflow and stor-
age signatures are controlled not by depth to bedrock but rather by properties and structures of the soil. For exam-
ple, expert observations of whether shallow interflow and return flow processes occur were more likely to match 
signature values than a simple depth to bedrock value. An example occurs in the Luquillo CZO, where depth to 
bedrock at the Rio Mameyes site is 30–40m, but streamflow dynamics are dominated by rapid delivery of event 
water to the stream by fast, shallow runoff processes including lateral macropore flow. Wlostowski et al. (2020) 
further agreed with our findings in noting a clear influence of tile drains in signatures for the IML CZO.

6.5. Recommendations for Signature Choice

In this section, we record signature-specific conclusions from our study, in particular whether signatures related 
to the process interpretations as previously proposed in Table 1, whether signatures could be robustly calculated 
across large samples of watersheds, and whether signatures relied on any watershed-specific fitting parameters. 
Fitting parameters that affect multiple signatures, and would ideally be checked visually against the flow time-
series, are those that control event selection and recession selection. These common parameters are noted in 
Table 1, although other signatures may also require parameters such as for baseflow separation. Our recommen-
dations are based on analyses across the CAMELS and CZO watersheds. Signature robustness and correlations 
were tested for CAMELS watersheds, and therefore these findings hold across a wide variety of basin sizes, 
hydroclimates and geophysical attributes. The process interpretations were tested for five CZO sites with a total 
of eight streamflow gauges. While these include a wide range of hydroclimates and landscapes (arid to humid to 
tropical), the smaller number of locations means that more caution should be applied when transferring the results 
to other watersheds. The recommendations are summarized in Table 2.

7. Conclusions
This study tested whether relationships between signatures and processes developed from experimental water-
shed studies hold true when applied over large scales and diverse hydro-climates. The relationships were tested 
using two types of data: large sample CAMELS data sets from four countries, and detailed information from five 
CZO watersheds in the U.S. We note that when single signature values are used to summarize complex watershed 
responses, they might represent a compromise value between climate and process effects, or between multiple 
processes (e.g., fast and slow recession processes, or spatially variable overland flow). This compromise demon-
strates the difficulty of summarizing processes using quantitative values, without losing some information.

We recommended a small set of preferred signatures that provide accurate and robust metrics for common 
process characteristics across diverse watersheds, as follows: TotalRR for water balance, Recession_a_season-
ality for seasonal variability in storage and recessions, AverageStorage for storage magnitude, BFI for baseflow 
magnitude, BaseflowRecessionK for baseflow response time, IE/SE/Storage_thresh for importance of infiltration 
excess, saturation excess and pre-event storage on flow generation, and SE_slope for saturated area expansion. We 
identified a small number of signatures that were not reliable (SE_effect, IE_effect, and StorageFraction) or had 
different interpretations than expected (EventRR) and would therefore not be recommend for use to identify the 
related processes in other watersheds. We made recommendations for adapting some signatures to better differ-
entiate between processes (using multiple BFI timescales to separate baseflow magnitude and response time, 
calculating Storage_thresh with longer memory to differentiate from SE_thresh). Overall, the results showed that 
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Signature Process interpretation Robustness/limitations Event Recession

Groundwater and baseflow signatures

 TotalRR Recommended signature for water balance. Strongly 
related to aridity across all CAMELS data sets 
(Figure 4a). At large scales describes climate more 
than hydrology, modified by storage dynamics 
at small scales (e.g. compare Dry and Elder 
watersheds at Eel CZO)

Easy and robust to calculate

 EventRR High (0.96) correlation to Total RR, therefore relates to 
total water balance rather than to watershed storage 
as previously claimed

x

 RR_Seasonality Our results in CZO watersheds confirm previous 
interpretations that this signature relates to bedrock 
permeability and watershed storage size. Correlates 
well to other storage magnitude signatures

x

 StorageFraction (incl. 
ActiveStorage and 
TotalStorage)

Unreliable signature for large samples as seen in 
unrealistic values and poor fit in plotting

 Recession_a_Seasonality Recommended signature for seasonal variability 
in storage and recessions. Our results in CZO 
watersheds confirm previous interpretations 
that this signature relates to ET influence 
on storage. Moderate to strong correlations 
with RecessionParameters_b (−0.60) and 
VariabilityIndex (0.74)

x

 AverageStorage Recommended signature for storage magnitude. 
Our results in CZO watersheds confirm previous 
interpretations that this signature relates to 
watershed storage

More reliable than the StorageFraction above, 
recommended when estimates of storage are 
needed

 RecessionParameters (b, T0) Established signatures with theoretical link to 
watershed storage-discharge relationship, highly 
correlated to other signatures of baseflow 
magnitude and response time

Does not distinguish short event recessions from 
longer dry season recessions

x

 MRC_num_segments Useful signature to identify complexity of recession 
shapes

Robust across a wide range of recession 
characteristics. For recessions with 
multiple segments of different slopes, 
BaseflowRecessionK may be unreliable

x

 BFI Recommended signature for baseflow magnitude. 
Reliable signature that correlates strongly with most 
other baseflow and storage signatures

BFI integrates multiple aspects of baseflow 
(volume of baseflow, response time, multiple 
baseflow sources or pathways), which cannot be 
distinguished based on a single BFI value

 BaseflowRecessionK Recommended overall signature for baseflow 
response time. Our results confirm relation to 
baseflow magnitude and residence time for most 
CZOs. Strong correlation with BFI (−0.88), and 
with other indicators of residence or response 
time, RecessionParameters_T0 (−0.74) and Mid_
Recession_Slope (0.75)

Usually reliable, however, if using high BFI and 
low Baseflow_Recession_K to indicate long 
GW residence times, may not differentiate 
between low baseflow with long residence time 
or moderate baseflow with moderate residence 
times. We advise a visual check of fit when 
MRC_num_segments is >1

x

 First_Recession_Slope A low first slope is supposed to indicate high storage 
near the soil surface, that is, the fastest flow path is 
delayed due to this storage. However, it is not easy 
to determine whether this matches with soil profile 
observations that typically record soil texture and/or 
importance of shallow flow processes

MRC fitting was robust across varied recession 
shapes

x

Table 2 
Summary of Findings for Groundwater and Overland Flow Signatures
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most signature patterns agreed with process interpretations, with groundwater and baseflow signatures being 
more reliable than overland flow signatures. Based on the CZO watershed results, signature-process relationships 
were most reliable in humid and Mediterranean-climate watersheds, and less reliable in arid and human-impacted 
watersheds. This difference reflects the history of signature development which has been concentrated in natural, 
humid basins, and points to scope for future signature development in a wider range of watersheds.

Data Availability Statement
The CAMELS U.S. data set is available at https://dx.doi.org/10.5065/D6MW2F4D (Addor et al., 2017; Newman 
et al., 2015). The hourly rainfall data set corresponding to the CAMELS U.S. locations is available at https://
doi.org/10.5281/zenodo.4072700 (Gauch et al., 2020, 2021). The CAMELS Great Britain data set is available at 

Table 2 
Continued

Signature Process interpretation Robustness/limitations Event Recession

 Mid_Recession_Slope Correlates strongly (0.75) with BaseflowRecessionK for 
response time, confirms previous description that it 
relates to retention capacity of watershed

MRC fitting was robust across varied recession 
shapes

x

 EventRR_TotalRR_ratio Showed reasonable match to process interpretation 
related to storage capacity in most CZOs, except for 
arid Santa Catalina watershed

Event and Total RR are highly correlated, making 
this ratio more uncertain

x

 VariabilityIndex Showed a moderate fit to storage information in 
CZO watersheds and easier to calculate than 
AverageStorage. Alternative to Recession_a_
Seasonality for quantifying seasonal variation in 
storage and recessions

Easy and robust to calculate. AverageStorage 
signature is preferred for storage estimates

Overland flow signatures

 IE_effect Watersheds where IE or SE dominates can be 
incorrectly identified by IE_effect and SE_effect 
values

IE_effect is not a reliable signature. Hourly data 
produces a closer match to process knowledge

x

 SE_effect Not strongly related to the threshold signatures; may 
show control of rainfall depth on flow, independent 
of the existence of a threshold

SE_effect is not a reliable signature. SE_effect 
is above 0.5 for most watersheds, so need 
the percentile to quantify high/low values. 
Hourly data produces a closer match to process 
knowledge

x

 IE_thresh, SE_thresh, 
Storage_thresh

Recommended signatures for importance of 
infiltration excess, saturation excess and 
pre-event storage on flow generation. Large, 
significant thresholds suggest that these processes 
are important. All the thresholds (IE, SE, storage 
thresh) are strongly positively correlated. That is, 
this identifies watersheds that require a lot of water 
to start producing flow

More reliable than IE/SE_effect. The very strong 
correlation between Storage and SE thresholds 
shows a difficulty in separating the impacts 
of pre-event storage and event depth. To 
achieve this, a longer storage memory than 
Mosley (1979) 30-day API used in the Storage_
thresh signature may be required. Hourly rainfall 
data is preferred for IE_thresh

x

 IE_thresh_signif, 
SE_thresh_signif, 
Storage_thresh_signif

Useful to confirm threshold existence. For Storage_
thresh_signif see comments on Storage_thresh 
above

Strongly negatively correlated to IE_thresh (for 
IE_thresh_signif) or SE_thresh (for SE_thresh_
signif and Storage_thresh_signif), that is, the 
code will generally not identify a threshold if it 
is not significant

x

 SE_slope Recommended signature for saturated area 
expansion. Our results in CZO watersheds 
confirm previous interpretations that this signature 
relates to expansion of saturated areas with event 
precipitation

x

Note. Column “Event” shows where a signature depends on prior event separation, column “Recession” shows where a signature depends on prior identification 
of recession periods; both these cases require additional parameters that may be watershed-dependent. Rows shaded in gray identify a smaller number of preferred 
signatures that provide accurate and robust metrics for common process characteristics, these are described in bold.

https://dx.doi.org/10.5065/D6MW2F4D
https://doi.org/10.5281/zenodo.4072700
https://doi.org/10.5281/zenodo.4072700
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https://doi.org/10.5285/8344e4f3-d2ea-44f5-8afa-86d2987543a9 (Coxon et al., 2020). The CAMELS Australia 
data set is available at https://doi.pangaea.de/10.1594/PANGAEA.921850 (Fowler et al., 2021). The CAMELS 
Brazil data set is available at https://zenodo.org/record/3964745 (Chagas et al., 2020). Critical Zone Observatory 
(CZO) data products are available at https://doi.org/10.4211/hs.29e2ec85770b42c881ef0750696463e5 (Wlos-
towski et al., 2021). The Toolbox for Streamflow Signatures in Hydrology toolbox (Gnann et al., 2021a) used to 
calculate hydrologic signatures is available at https://github.com/TOSSHtoolbox/TOSSH and archived at https://
zenodo.org/record/6462813 (Gnann et  al.,  2021b). The code used to load the CAMELS data into MATLAB 
is available at https://github.com/SebastianGnann/CAMELS_Matlab and archived at https://zenodo.org/
record/6462821 (Gnann, 2022). The code to reproduce our analysis, and a full spreadsheet showing all signature 
values (with data at hourly and daily timestep), percentiles, descriptions of each process and key references for 
each CZO watershed, are available at https://github.com/SebastianGnann/LargeScaleSigs and archived at https://
zenodo.org/record/6462823 (McMillan et al., 2022).
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