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1 Introduction 19 

Observational data is the foundation for most of hydrological science. However, observational data 20 
uncertainty can often have high magnitudes (e.g. ±50–100% typical low flow uncertainty, McMillan et 21 
al., 2012) and be of complex character (e.g. Viney and Bates, 2004), which means that in some cases our 22 
data may be of limited use or even misleading in our quest to understand hydrological processes (e.g. 23 
Kauffeldt et al. 2013). Discussion of the impacts of data uncertainty on process understanding reaches 24 
from very early hydrological observations (Heberden, 1769), through early uncertainty estimation 25 
techniques (Horton, 1923) and continuing to the plea from Sevruk (1987) that data errors must not be 26 
ignored. The impacts of intrinsic data limitations and uncertainties on modelling of hydrological 27 
processes has also been long discussed by for example Klemes (1986), Beven (2002), Sivapalan et al. 28 
(2003), and Kirchner (2006). Understanding, quantifying and documenting observational uncertainty and 29 
their impacts on hydrological analysis and modelling in any study is therefore essential to draw robust 30 
conclusions about hydrological processes.  31 
 32 
Hydrologists have documented the high value of observational data for predicting flood events, protecting 33 
ecosystems and water resources, for example from experimental watersheds (Tetzlaff et al., 2017), and for 34 
soil moisture measurements (Vereecken et al., 2008). Recently, increased attention has been given to 35 
providing well-documented datasets for monitored watersheds, e.g. (McDonnell et al., 2021; Zhang et al., 36 
2020), and an appreciation of how that information helps us to understand hydrological processes 37 
(Aulenbach et al., 2021). However, observational uncertainties are rarely documented and published 38 
together with datasets. Understanding and quantifying uncertainties in these data will enable more robust 39 
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inference of hydrological processes, evaluation of hydrological models, and water management decisions 1 
such as cost-benefit analyses (McMillan et al., 2017, 2018). 2 
 3 
Hydrological modeling techniques often require specific information on data uncertainty. For example, 4 
model calibration requires information on uncertainty in the data used for model input and evaluation, to 5 
ensure that calibrated parameters are not biased through forcing a model to exactly reproduce uncertain or 6 
disinformative data (Beven et al. 2011). Data assimilation techniques such as Kalman or Particle filtering 7 
require data uncertainty information to enable them to correctly balance the information content of model 8 
predictions and new data observations (Smith et al., 2008; Ocio et al., 2017). Even when uncertainty 9 
analysis is not explicitly required for a model analysis, it brings a deeper appreciation of the strengths and 10 
limitations of our data, and of subsequent inference based on that data (Juston et al., 2013; Hughes et al., 11 
this issue). 12 
 13 
Working with observational uncertainty in any study means that the potentially multiple sources of 14 
uncertainty that contribute to the total data uncertainty need to be understood, documented and quantified. 15 
McMillan et al. (2018) provide an overview of the whole process of working with observational 16 
uncertainty from identifying and documenting individual sources of uncertainty in a perceptual model, to 17 
methods such as replicates and sub-sampling to estimate individual sources, and Monte Carlo methods to 18 
quantify combined data uncertainty from multiple uncertainty sources (e.g. Reitan & Petersen-Øverleir, 19 
2009; Le Coz et al. 2014).  20 
 21 
This special issue is focused on observational uncertainty, its sources and impacts on analysis and 22 
modelling of hydrological processes. The special issue encompasses a broad spectrum of papers (see 23 
Figure 1, and Table 1) focusing on different facets of observational uncertainty from uncertainty in 24 
measurement techniques to the impacts of observational uncertainty on process representation in 25 
hydrological models. They also focus on different components of the hydrosphere including precipitation, 26 
soil moisture, river flow and water quality. In this preface, we give an overview of each contribution and 27 
discuss their key results. We emphasise the importance of these studies and how they can be used by the 28 
community. We discuss the challenges associated with incorporating the results of detailed uncertainty 29 
investigations into everyday hydrological studies, and suggest potential routes to progress this topic.  30 
 31 
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 2 
Figure 1. Contributions to this special issue and their key focus. The paper ID’s referenced in each circle 3 
can be found in Table 1. Image shown on the left is of Brant Broughton gauging station taken from 4 
geograph.org.uk and is reproduced under a CC BY-SA license. 5 
 6 
Table 1. Lead author, paper title and type of contribution to this special issue  7 
 8 

ID Lead Author Paper Title Type 

1 Beven An epistemically uncertain walk through the rather fuzzy subject of 
data and model uncertainties 

Invited 
Commentary 

2 Horner Streamflow uncertainty due to the limited sensitivity of controls at 
hydrometric stations 

Observational 
Uncertainties 

3 Regina Automated Correction of Systematic Errors in High Frequency Stage 
Data from V‐Notch Weirs using Time Series Decomposition 

Observational 
Uncertainties 

4 Muste Impact of the sampling duration on the uncertainty of averaged 
velocity measurements with acoustic instruments 

Observational 
Uncertainties 

5 Le Coz Estimating the uncertainty of video-based flow velocity and discharge 
measurements due to the conversion of field to image coordinates 

Observational 
Uncertainties 

6 Iwema Accuracy and precision of cosmic-ray neutron measurements and 
their impact on estimated soil moisture at humid environments 

Observational 
Uncertainties 

7 Liu Leveraging ensemble meteorological forcing data to improve 
parameter estimation of hydrologic models 

Model Input 
Uncertainty 

8 Culler A Multi-sensor Evaluation of Precipitation Uncertainty for Landslide-
triggering Storm Events 

Model Input 
Uncertainty 

9 Beven Issues in Generating Stochastic Observables for Hydrological Models Model Input 
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Uncertainty 

10 Stevenson Effects of streamflow isotope sampling strategies on the calibration of 
a tracer-aided rainfall-runoff model 

Model Evaluation 
Uncertainty 

11 Wu Incorporating multiple observational uncertainties in water quality 
model calibration 

Model Evaluation 
Uncertainty 

12 Hughes Unpacking some of the linkages between uncertainties in 
observational data and the simulation of different hydrological 
processes using the Pitman model in the data scarce Zambezi River 
basin 

Whole System 
Uncertainty 

13 Hankin Reducing macro-scale uncertainty using micro-catchment 
experiments for multi-local scale modelling of nature-based solutions 

Whole System 
Uncertainty 

2 Observational uncertainty in old and new measurement techniques 1 

The hydrological community is continually working to improve measurement techniques for hydrological 2 
variables, and to develop new measurement methods. Beven (2019a) identified better data collection 3 
techniques, and better estimates of data uncertainty, as a key requirement for advances in hydrological 4 
modeling. One of the 23 unsolved problems in hydrology identified by Blöschl et al. (2019) is “How can 5 
we use innovative technologies to measure surface and subsurface properties, states and fluxes at a range 6 
of spatial and temporal scales?”. One aspect of developing both old and new observational techniques is a 7 
better characterisation of the associated uncertainties. In this section, we present five papers that provide 8 
expert information on observational uncertainty in new and old measurement techniques, including 9 
stream gauging via weirs, acoustic dopplers and videography; and soil moisture sensing using cosmic ray 10 
neutron probes. Authors using any of these data types may need to estimate data uncertainty magnitudes 11 
for use in subsequent analyses. The papers described below provide uncertainty estimates from expert 12 
teams, which may reduce the need for study-specific uncertainty analysis. These papers provide valuable 13 
guidance on improving hydrometric procedures to reduce uncertainty, from field equipment design, to 14 
data collection, to data post-processing.  15 
 16 
During experimental design, Horner et al (2021) show how the shape of a weir impacts the sensitivity of 17 
streamflow measurements to errors in measured stage. They show that weir design is particularly 18 
important for low flow measurement accuracy. Using synthetic examples derived from the Yzeron River 19 
at Craponne, France, the authors showed that adding a triangular notch to a flat weir could reduce 20 
maximum uncertainty in daily (low) flows from +/- 300% to +/- 25%. The reduction in uncertainty 21 
carried over into metrics such as the annual minimum of 30-day discharges, used to characterize annual 22 
low flow behaviour. The benefits are demonstrated in a real-life situation where a weir with a rectangular 23 
notch was added to a previous flat concrete step at a gauging station in the Yzeron catchment. Because 24 
uncertainties derived from stage measurements are large at low flows, these recommendations on weir 25 
design will be of particular value for rivers that commonly experience extreme low flows, such as 26 
intermittent rivers. Le Coz et al (this issue) analyze a different flow gauging technique: image processing 27 
procedures used to estimate water surface velocity from video footage. In particular, they show how two 28 
previous methods to orthorectify images (transform from oblique camera angle to a plan view) can be 29 
combined to reduce uncertainty in the derived velocity. The first method uses ground reference points 30 
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which are located in the image and whose locations are precisely measured; the second method uses prior 1 
knowledge of the camera position and angles. By combining these two methods, limits on the flow 2 
uncertainty of +/- 15% can be achieved using only three reference points. Using six reference points 3 
reduces the uncertainty to +/- 12% while the influence of errors associated with the orthorectification 4 
parameters reduces to less than 14% of the total uncertainty budget, showing that little further advantage 5 
is gained by adding more than six reference points.  6 
 7 
During data collection, two papers show how sampling duration impacts on data uncertainty. When using 8 
acoustic instruments to measure water velocity, Muste et al (this issue) show how channel environment 9 
and position within the channel cross-section impact the sampling duration needed to reach a specified 10 
level of uncertainty. As well as providing guidelines on sample duration (90 s and 150 s for ADV and 11 
ADCP instruments, respectively), they demonstrate how to determine suitable sample durations tailored 12 
to individual locations by comparing velocities from shorter samples to those from samples collected over 13 
an excessive long-duration measurement. When using cosmic-ray neutron probes to measure soil 14 
moisture, Iwema et al (this issue) show that the wetness state of the catchment is the most important 15 
control on the sampling duration needed to match the precision levels of competing sensing techniques. 16 
To match the precision (in cm3cm-3) of time domain transmissometry (TDT) sensing, 2 hours is needed 17 
during dry conditions, but 40 hours is needed for wet conditions. The latter may prevent precise 18 
measurements of short-term effects of storm rainfall or irrigation. These guidelines can assist hydrologists 19 
in attaining required measurement precision in the most efficient way. 20 
 21 
During post-processing, knowledge of the causes and properties of hydrological data uncertainty enables 22 
automatic correction or accounting of uncertainties. For example, Iwema et al (this issue) investigated 23 
environmental factors such as biomass, leaf litter, and surface and atmospheric water that can absorb or 24 
slow cosmic-ray neutrons and therefore cause errors in soil moisture estimates. They show that 25 
accounting for these factors in a site with shrub land cover could change soil moisture estimates by 10%. 26 
These factors were most important during dry conditions when the environmental factors account for a 27 
greater proportion of total hydrogen in the environment. Regina et al (this issue) show how uncertainty 28 
knowledge that was previously implicitly incorporated into manual post processing of river stage data can 29 
be made explicit. They used their previous experience in causes of systematic stage errors to create an 30 
automatic method to correct stage data based on time series decomposition. Both papers make expert 31 
knowledge and detailed investigations of data uncertainties accessible to hydrologists using these data 32 
sources.  33 

3 Impact of observational uncertainty on process representation in 34 

hydrological models  35 

The impact of observational uncertainty on parameter calibration and process representation in 36 
hydrological models is a key problem for the hydrological community, yet is commonly overlooked. 37 
Observational uncertainties are often difficult to quantify because the necessary information is not 38 
available at all or not published together with standard datasets, even if there are positive developments in 39 
this area, e.g. demands on streamflow monitoring agencies from their funders to publish uncertainty 40 
magnitudes. To avoid drawing the wrong conclusions, it is essential to include observational data 41 
uncertainty when testing models as hypotheses about how catchments function (Beven, 2019a, Beven this 42 
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issue, a), and to consider how the available data uncertainty information may limit the inference about 1 
process hypotheses (Westerberg and Birkel, 2015). This special issue contains eight papers focused on the 2 
impact of observational uncertainties in hydrological modelling that we split into three sub-groups 3 
focused on (1) model input uncertainty, (2) model evaluation uncertainty and (3) whole system 4 
uncertainty. 5 
 6 
3.1 Model input uncertainty 7 
 8 
Model input uncertainty, beside parameter uncertainty, is the uncertainty source that is most often 9 
investigated in hydrological modelling. Input data uncertainty propagates through hydrological models 10 
and thus may affect process understanding and decisions made on model results. Observed forcing 11 
variables used for hydrological models are generally uncertain due to several reasons such as 12 
measurement, interpolation or scaling errors (McMillan et al. 2018). These errors contribute further to 13 
uncertainty related to the representativeness of the estimated model input values for the actual catchment 14 
(Beven 2019b, Beven this issue, a, b), particularly for input variables that demonstrate high temporal and 15 
spatial variability such as precipitation in mountainous terrain (Berghuijs et al. 2014, Sikorska and Seibert 16 
2018, Grundmann et al. 2019), whereas it is less pronounced for input variables that are assumed to 17 
change smoothly in space and time such as temperature in flat terrain. 18 
 19 
Among the input data usually required for a hydrological model, uncertainty in precipitation data has 20 
received the most attention in the hydrological community (e.g., Kavetski et al. 2006,  McMillan et al. 21 
2010, Renard et al. 2011, Sikorska et al. 2012, Del Giudice et al. 2016). Works on observational 22 
uncertainty connected to other model inputs such as temperature or evaporation are less frequent. One 23 
reason for that is that precipitation is often the strongest predictor of river streamflow in humid or 24 
temperate catchments (Müftüoğlu 1991), and also has the strongest impact on model output errors 25 
(Sikorska-Senoner & Quilty 2021). Precipitation data products have also been demonstrated to have a 26 
higher impact on the hydrological model than temperature data (Tarek et al. 2020) or evaporation data 27 
(Shoaib et al. 2018). However, in (semi-)arid catchments or in wet environments, uncertainty in input 28 
evaporation data may also be of high importance (Dembélé et al. 2020, Page et al. 2020).  29 

In our special issue, all three papers dealing with input uncertainty similarly focus largely on precipitation 30 
uncertainty. The papers investigate input (precipitation) uncertainty and its impact on parameter 31 
identification in hydrological models (Liu et al. this issue), input uncertainty in observed and generated 32 
variables for hydrological models and process representation (Beven this issue, b), and precipitation 33 
uncertainty impact on the rainfall-triggered landslide events (Culler et al. this issue). Beven (this issue, b) 34 
also discusses uncertainties in other input variables, i.e. temperature and evapotranspiration. 35 

In detail, Liu et al. (this issue) investigate the effect of using a forcing ensemble of precipitation time 36 
series, represented as an ensemble meteorological dataset or a collection of multiple deterministic 37 
meteorological datasets, on the ability to determine robust parameters of a hydrological model. Based on 38 
30 synthetic datasets and 20 real case studies, they find that using an ensemble of forcing inputs is 39 
beneficial over a single deterministic input because it improves the overall simulation skills of ensemble-40 
based flow simulations and reduces the potential effect a poor-quality input data can have on model 41 
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calibration. They recommend using ensemble forcing-based modelling to account for input uncertainty 1 
and to better constrain model parametric uncertainties. 2 

Culler et al. (this issue) investigate the effect that different precipitation products can have on the 3 
accuracy in rainfall-triggered landslide event prediction. They compare different precipitation products 4 
such as satellite, radar and rain-gauge data, to assess the effect of the uncertainty in precipitation data on 5 
predicted landslide magnitudes in the continental US and Canada. Generally, they find that the value of 6 
different precipitation products for landslide predictions varies widely across the different precipitation 7 
products tested. For example, peak intensities of precipitation events triggering the landslides varied in 8 
the range of 7.8 mm/h to 57 mm/h depending on the precipitation product used. This scale demonstrates 9 
that the choice of the precipitation data used for prediction of landslides can have a large effect on the 10 
predictability skills one can achieve. The authors thus recommended using more than one precipitation 11 
product for predicting landslides triggered by intense precipitation events.  12 

Finally, Beven (this issue, b) provides a comprehensive overview of the development of stochastic 13 
generators for simulating observed time series inputs to hydrological models such as precipitation and 14 
evaporation, and on streamflow time series outputs. The author discusses critical uncertainty issues that 15 
arise for any observables and in particular those originating from stochastic generators, emphasizing 16 
uncertainty arising from the temporal and spatial representativeness of the input observables for the 17 
catchment and uncertainty linked to non-stationary and persistent stochastic behaviour in assessing future 18 
variability. This paper raises awareness of different uncertainty types, such as hydrological model 19 
uncertainty for extreme events, unverified extreme tail behaviour in underlying distributions, and issues 20 
of extreme values being generated by chance, that are connected with the use of stochastic generators for 21 
the purpose of providing time series of input (or output) variables. It serves as a valuable guidance on 22 
uncertainties in modelling studies that rely on stochastically generated variables. 23 

3.2 Model evaluation uncertainty 24 
 25 
Many different types of data can be used to evaluate hydrological models including streamflow, 26 
groundwater levels, soil moisture, stable water isotopes and water quality data. These observational 27 
datasets all have associated uncertainties which need to be quantified (e.g. Blazkova et al., 2002; Freer et 28 
al., 2004; McMillan et al, 2012) and accounted for through the modelling chain to ensure robust 29 
conclusions about model results and hydrological process representations. Commonly, hydrological 30 
models are calibrated and evaluated against streamflow data. However, the contributions in this special 31 
issue focus on using water quality and stable water isotope data to calibrate hydrological models and 32 
develop our understanding of hydrological processes. These papers provide guidance on the quantity of 33 
data and sampling strategy required to provide a robust characterisation of catchment functioning 34 
(Stevenson et al, this issue), and on effective strategies of incorporating observational uncertainties in 35 
water quality data for model calibration (Wu et al, this issue). They quantify data uncertainty in each case 36 
and provide valuable guidance on incorporating observational uncertainties in model evaluation.  37 
 38 
Stevenson et al, (this issue) gives guidance on the opportunities for using stable water isotope data to 39 
better constrain model parameters. Analysing a seven year time series of daily stable water isotope data 40 
from precipitation and rainfall, Stevenson et al, (this issue) find that appropriate sampling strategies of 41 
water isotope data are critical to robust model calibration and reducing model uncertainty. In particular, 42 
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they found that while weekly sampling yielded almost identical model performance and calibrations 1 
compared to daily, monthly sampling led to greater uncertainty in the derived parameter sets. They also 2 
found that the model was sensitive to the conditions when the samples were taken, with increased model 3 
sensitivity during dry conditions due to non-linear interactions between input fluxes and storage dynamics 4 
such as the expansion/contraction of saturation areas. This type of guidance is essential for designing 5 
robust data sampling strategies to minimise uncertainty in subsequent hydrological modelling.  6 
 7 
In principle, the use of tracer and other complementary data in model calibration should help move us 8 
towards more reliable model calibration. In practice it is not so simple, since the use of such data might 9 
require the incorporation of additional parameters or consideration of commensurability uncertainties 10 
where observed variables are different in scale or meaning from simulated variables. This then introduces 11 
a greater potential for parameter interactions in fitting the uncertain observations. Tracer data provide an 12 
example. The effective storages required to predict hydrographs might be different from those to predict 13 
tracer mixing because of the way in which the hydrograph is controlled by the celebrities of pressure 14 
waves in the system, and the tracer mixing by water velocities (e.g. Beven, 1989, 2020; McDonnell and 15 
Beven, 2014).  Another example is the use of distributed observations to estimate effective parameter 16 
values at the catchment scale, as in the use of water tables in Lamb et al. (1998). In that case, adding local 17 
parameters helped in reproducing water tables, but did not have a great effect on uncertainty in the 18 
discharge predictions. 19 
 20 
Our final contribution in this sub-group develops a Bayesian error analysis method to accommodate 21 
multiple sources of observational errors (Wu et al, this issue). When tested with total suspended solid data 22 
in a conceptual water quality model, they demonstrated that the new algorithm successfully quantifies 23 
sources of observational error. They also illustrate the significance of incorporating observational errors 24 
in input and output data to constrain model uncertainty.   25 
 26 
3.3 Whole System Uncertainty 27 
 28 
Typically, hydrologists use a wide range of data when analysing and modelling hydrological processes. 29 
Every dataset will be subject to its multiple sources of uncertainty (McMillan et al, 2018), which will 30 
likely be non-stationary in time and space. Hence, a specific challenge for hydrology is accounting for 31 
multiple sources of observational  uncertainty that can arise from many different sources, and their 32 
impacts on the analysis and modelling of hydrological processes. While the previous papers in this special 33 
issue have typically focused on a single source of uncertainty, three of the contributions have taken a 34 
broader outlook focusing on multiple sources of observational uncertainty. These papers provide valuable 35 
guidance on evaluating observational uncertainties in both data rich (Hankin et al, this issue) and data 36 
poor (Hughes et al, this issue) regions, alongside an outlook and future directions for assessing 37 
observational data and model uncertainties (Beven, this issue, a).  38 
 39 
Modelling the impact of Nature Based Solutions on flows requires accurate data at high spatial and 40 
temporal resolutions. Hankin et al (this issue) evaluate how to reduce macro-scale uncertainty in these 41 
analyses using data from 18 well-monitored micro-scale catchments. They demonstrate that even with 42 
highly accurate data at small scales there are issues with equifinality: they find that detected shifts in 43 
model parameters are place and storm-specific, and that additional data (satellite event footprints of flood 44 
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inundation) are needed to further constrain results. They conclude that a greater focus on observations at 1 
local scales in multiple locations is needed to better constrain uncertainties, particularly when assessing 2 
change.  3 
 4 
In contrast to the focus on well-monitored local-scale catchments in Hankin et al (this issue), Hughes et al 5 
(this issue) consider observational uncertainties and their impacts on hydrological modelling and process 6 
understanding in a data scarce region. They focus on observational uncertainties from multiple data 7 
sources (evaporation, soil moisture, water use, rainfall, streamflow and groundwater recharge) and assess 8 
their role in identifying the  relevant contribution of different hydrological processes. While quantitative 9 
estimates of observational uncertainties are rarely available in data-scarce regions, Hughes et al (this 10 
issue) demonstrate other techniques to assess observational uncertainties such as comparing multiple 11 
datasets of the same observation or assessing the consistency and completeness of the dataset. They 12 
conclude that while model equifinalities still dominate in terms of identifying the relative occurrence of 13 
different runoff-generating processes, observational uncertainties are still a key issue and that there is not 14 
enough data to resolve equifinalities in their model. They identify that improved independent estimates of 15 
groundwater recharge could help in constraining the model parameter space.   16 
 17 
Finally, in the invited commentary of this special issue, Beven (this issue, a) takes the reader on a tour of 18 
the fuzzy subject of observation and model uncertainties, providing a brief summary on how uncertainty 19 
awareness arose in the hydrological community and summarizing current and future direction of 20 
uncertainty research. He discusses the challenges of epistemic observational uncertainties, equifinality 21 
and likelihood measures, and their implications for process understanding (i.e. how can we ensure we get 22 
the right results for the right reasons?). Looking to the future, Beven (this issue, a) advocates that there 23 
should be more interaction between observational and computational hydrologists to better define critical 24 
observations that could help us to distinguish between model formulations and/or parameterisations. He 25 
also discusses the need for the starting point of hydrological analyses to be focused on quantifying and 26 
evaluating observational uncertainties, as is showcased in the papers within this special issue. 27 

4 Discussion 28 

This special issue provides a collection of 13 papers on different aspects of observational uncertainty and 29 
its impact on hydrological modelling and process representation. These papers focus on observational 30 
uncertainty, input uncertainty, model evaluation uncertainty, and whole system uncertainty (Table 1). 31 
Hence, the contributing papers provide a broad spectrum of different commonly applied methods for 32 
uncertainty quantification from sensitivity analysis, to Monte Carlo techniques, to Bayesian methods, 33 
from a single case study to a study with several catchments. Therewith, reported uncertainty magnitudes 34 
are linked to the method selected for uncertainty quantification and the data used, and this should be kept 35 
in mind when transferring uncertainty values to other studies. 36 
 37 
The papers of this special issue suggest five overarching themes. First of all, while most papers use 38 
standard methods to quantify uncertainty, some papers provide novel methods to observe, quantify or 39 
deal with specific uncertainty components. For instance, Iwema et al. (this issue) address the issue of 40 
applying new hydrological techniques to non-ideal locations, by applying cosmic-ray soil moisture 41 
sensing to sites in a humid environment and with high above-ground biomass. The authors address 42 
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unexpected uncertainty sources such as sheep gathering near the sensor and introducing a time-variable 1 
source of biomass. Testing new (hydrological) techniques at non-optimal locations enables us to test the 2 
limits of such techniques and apply them in a broader range of locations, while accounting for 3 
uncertainty. Another example is given by Liu et al. (this issue) who propose using an ensemble of input 4 
forcings, instead of only a single input product, to address input uncertainty in model simulations and to 5 
better constrain model parameters. 6 
 7 
Second, the reader should be more aware of the way the hydrologic measurements are derived and the 8 
methods standing behind the measured values. Unfortunately, it is still a common practise to assume 9 
values calculated from a ‘measurement model’ as direct hydrologic measurements, i.e., where there is a 10 
transform function required to calculate the desired quantities (e.g., streamflow). When this transform is 11 
highly non-linear, such as a stage to discharge, or neutron count to soil moisture, even small fluctuations 12 
in the measured quantity have the potential to create large uncertainties in the hydrologic quantity of 13 
interest (e.g. streamflow). Papers focusing on observational uncertainty (Horner et al. this issue, Iwema et 14 
al. this issue, Muste et al. this issue,  Le Coz et al. this issue, Regina et al. this issue) raise awareness of 15 
this issue to the hydrological community. A detailed overview on different methods for quantifying 16 
uncertainties in streamflow data derived with the commonly used rating curve model is provided in detail 17 
by Kiang et al. (2018). Finally, Beven (this issue, b) raises awareness of uncertainties linked to the use of 18 
stochastically generated time series of model input and output variables in hydrology. We call for a better 19 
dialogue between experimentalists and modellers in hydrology that encompasses not only soft data on 20 
process understanding (Seibert and McDonnell, 2002), but also soft data on observational uncertainties 21 
and their possible impacts on our process understanding and models. 22 
 23 
Third, several papers have also highlighted the value of thoughtful study design in experimental and 24 
modelling studies to reduce the impact of observational uncertainties on study results and conclusions. 25 
Based on papers from this special issue, it is recommended to use long-duration or intensive sampling 26 
campaigns to investigate and reduce observational uncertainty and for development of efficient 27 
observational methods (Muste et al. this issue). Another possibility is using subsampling pre-campaigns 28 
to define the correct sampling interval for the study of interest that optimizes the uncertainty and sampling 29 
efforts (Stevenson et al. this issue). A correct design of the modelling study should consider a proper 30 
selection of the input (precipitation) products for hydrological models because the model parameters and 31 
modelling uncertainty will largely depend on this forcing product. Based on papers from this issue, it 32 
could be recommended to either test different products to choose the most appropriate one for the purpose 33 
of the study (Culler et al. this issue), or to use an ensemble of input forcings instead of using only a single 34 
product (Liu et al. this issue).  35 
 36 
Next, some papers focus on providing approaches for better constraining model parameters, 37 
reducing modelling uncertainty and improving process understanding. In this respect, a multi-data 38 
approach can be recommended that conditions model parameters either on multiple input or output 39 
datasets. In this way, the impact of observational uncertainty on model simulations can be reduced. A 40 
great milestone has here been achieved with more frequently available remote sensing data (Silvestro et 41 
al. 2015), opening new possibilities for gathering information on soil moisture, snow depth, 42 
evapotranspiration, etc., particularly for remote or ungauged locations. Among papers of this special 43 
issue, four papers used multiple datasets for model calibration to more robustly constrain model 44 
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parameters and in this way reduce modelling uncertainty. Three of these papers focused on multiple 1 
output datasets, i.e. using more than one output variable, with total suspended solid data in addition to 2 
streamflow (Wu et al. this issue) or stable isotopes together with streamflow data (Stevenson et al. this 3 
issue). One paper recommends using multiple input precipitation products to account for input uncertainty 4 
and to better constrain parameter uncertainty of hydrological models (Liu et al. this issue). Nevertheless, 5 
assessing the effect of using multiple datasets on model identification and process understanding remains 6 
an ongoing research avenue, specifically as new datasets, new techniques for data collection, or new 7 
methods for data uncertainty assessment become more available. 8 
 9 
Finally, an important issue raised by some papers is linked with developing or supporting open-access 10 
softwares through integrating the authors’ advances in quantifying and reducing observational 11 
uncertainty into commonly-used software packages. Le Coz et al (this issue) integrate camera calibration 12 
uncertainty and other uncertainty sources into the openly available fudaa-LSPIV software to estimate 13 
discharge uncertainty. Iwema et al (this issue) include neutron mitigating factors such as biomass, leaf 14 
litter, and surface and atmospheric water that influence soil moisture estimates into the Cosmic-ray Soil 15 
Moisture Interaction Code (COSMIC). Use of commonly available or open-access softwares and models 16 
fosters reproducible research and enables generalising uncertainty estimates from case studies and to 17 
transfer them to other locations or studies. This is an important step towards improved uncertainty 18 
treatment in hydrology. 19 

5 Contribution, Challenges and Outlook 20 

Taken all together, the contributions of this special issue demonstrate that understanding and quantifying 21 
the different components of observational uncertainty are of great importance for robust model 22 
calibration, model predictions and process understanding. The papers of this issue can serve as a guidance 23 
for a reader in designing their own uncertainty study and selecting proper materials, data and tools for 24 
model calibration and uncertainty quantification. They also give an overview of state-of-the-art methods 25 
and novel approaches applied to uncertainty quantification in hydrological modelling and how they may 26 
impact on process understanding. Finally, they can awaken awareness of the uncertainty problem in 27 
hydrological data and models. 28 
 29 
Despite the broad uncertainty spectrum covered by this special issue, several points were not raised by 30 
any of the contributing papers. Among others, the issue of uncertainty in large scale and large-sample 31 
hydrology was not covered, whereas the impact of uncertainty on process understanding was only 32 
touched upon. In addition, some recent measurement developments, such as the use of mobile phone 33 
networks to measure precipitation rates and data crowdsourcing, were not tackled by any of the papers. 34 
 35 
Accounting for observational uncertainty in large scale and large-sample hydrology is challenging for 36 
several reasons. First, detailed spatial and temporal data, together with knowledge and metadata about 37 
site-specific measurement methods and conditions that are needed for in-depth analyses of observational 38 
uncertainties is typically not available at the large scale. Second, methods for assessing observational 39 
uncertainties developed for individual catchments may be prohibitively time-consuming at the large scale. 40 
Third, there are currently still computational limitations for comprehensive assessment of data 41 
observational uncertainty or modelling uncertainty at a large sample of catchments (Arheimer et al. 2020). 42 
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Large scale studies have therefore typically used multidata approaches to assess uncertainty for input 1 
variables such as precipitation, temperature and potential evaporation for which many large-scale remote-2 
sensing and rain gauge products are available (e.g. Alvarez-Garreton et al. 2018). Another readily 3 
available approach that has been applied at the large scale is to assess dataset consistency in terms of 4 
water-balance closure prior to modelling to better understand observational data limitations and their 5 
impacts on modelling results (Kauffeldt et al. 2013). For discharge uncertainty, studies for large samples 6 
of catchments are still rare (see Petersen-Øverleir et al. 2009 and Coxon et al. 2015), and generalised 7 
uncertainty estimates have been used where site-specific data are not available (Westerberg et al. 2014). 8 
While progress is being made for the inclusion of observational uncertainty estimates in large-sample 9 
studies (e.g. Alvarez-Garreton et al, 2018; Coxon et al, 2020; Klinger et al, 2021), these datasets still 10 
generally lack consistent uncertainty estimates (Addor et al. 2020). More research is needed in this 11 
direction, especially because studies of observational uncertainties at the large scale can provide 12 
important information on estimates of observational uncertainty that could be generalized or transferred to 13 
other regions (McMillan et al. 2018). 14 
 15 
Several novel measurement techniques are of interest to hydrologists, such as use of eddy covariance or 16 
microwave links from mobile phone networks and drone camera techniques for water surface. The eddy 17 
covariance technique is a micrometeorological method for direct observation of the exchange between 18 
ecosystem and atmosphere in terms of gas, energy, and momentum (Grelle and Keck 2021). It can be 19 
applied to measure H2O fluxes. Microwave links from mobile phone networks have been adapted to 20 
estimate precipitation rates and are particularly suitable for areas with a low density of traditional rainfall 21 
measurement devices such as mountainous, urban areas and the developing world (Uijlenhoet et al. 2018). 22 
Another steadily growing measuring technique is the use of image-based data gathered either with 23 
unmanned aerial systems, drones  (Tokarczyk et al. 2015) or from surveillance cameras to identify water 24 
levels during urban flooding (Leitão et al. 2018). However, these novel measuring techniques are 25 
currently still missing uncertainty considerations. 26 
 27 
Another rapidly growing branch of hydrological measurement is crowdsourcing that involves active 28 
contribution of citizens via citizen science (Nardi et al. 2021). As a low-cost method that relies on already 29 
available sensors (e.g., private mobile phones), it has a great potential for supporting professional 30 
measurement campaigns at a large spatial scale, despite the quality of crowdsourced data being lower 31 
(Zheng et al. 2018). To provide good quality crowdsourced data, training or instruction is essential, 32 
particularly for non-intuitive variables or more complex tasks. The uncertainty of such crowdsourced data 33 
remains unexplored for hydrological modelling. 34 
 35 
These novel measurement techniques generate new observational uncertainty challenges in providing 36 
high quality data for hydrological modelling and process understanding. We encourage future research 37 
studies to understand, quantify and document these observational uncertainties related to new and old 38 
measurement techniques. At the same time, an improved dialogue on observational uncertainties between 39 
field hydrologists, modellers and analysts will help to reduce their impact on the conclusions of our 40 
hydrological studies.  41 
 42 
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