WIREs Water

WILEY

A review of hydrologic signatures and their applications.

Journal:	WIREs Water
Manuscript ID	Draft
Wiley - Manuscript type:	Overview
Date Submitted by the Author:	n/a
Complete List of Authors:	McMillan, Hilary; San Diego State University, Geography
Choose 1-3 topics to categorize your article:	
Keywords:	Hydrologic Signatures, Flow metrics, Flow indices

	Article Type:		
ļ	© OPINION	C PRIMER	OVERVIEW
}	C ADVANCED REVIEW	C FOCUS ARTICLE	SOFTWARE FOC
	Authors:		
	Hilary K. McMillan* [ORCID iD: 0000-0002-9330-97	30. San Diego State University h	mcmillan@sdsu.edu]
		so, sun prego state oniversity, in	
	A betweet		
	ADSTLACT		
/	Abstract	titative metrics or indices that de	escribe statistical or dynamical
ł	Hydrologic signatures are quan properties of hydrologic data si	titative metrics or indices that de eries, primarily streamflow. Hydr	escribe statistical or dynamical ologic signatures were first use
H F G	Hydrologic signatures are quan properties of hydrologic data si eco-hydrology to assess alterat	titative metrics or indices that de eries, primarily streamflow. Hydr ions in flow regime, and have sin	escribe statistical or dynamical ologic signatures were first us ce seen wide uptake across a
l F e	Hydrologic signatures are quan properties of hydrologic data si eco-hydrology to assess alterat of hydrological fields. Their app	titative metrics or indices that de eries, primarily streamflow. Hydr ions in flow regime, and have sin plications include extracting biolo	escribe statistical or dynamical ologic signatures were first us ce seen wide uptake across a gically relevant attributes of
	Hydrologic signatures are quan properties of hydrologic data si eco-hydrology to assess alterat of hydrological fields. Their app streamflow data, monitoring hy	titative metrics or indices that de eries, primarily streamflow. Hydr ions in flow regime, and have sin plications include extracting biolo ydrologic change, analysing runo	escribe statistical or dynamical ologic signatures were first us ce seen wide uptake across a gically relevant attributes of ff generation processes, defini
	Hydrologic signatures are quan properties of hydrologic data so eco-hydrology to assess alterat of hydrological fields. Their app streamflow data, monitoring hy similarity between watersheds signatures allow us to extract n	titative metrics or indices that de eries, primarily streamflow. Hydr ions in flow regime, and have sin plications include extracting biolo ydrologic change, analysing runot , and calibrating and evaluating h	escribe statistical or dynamical ologic signatures were first us ce seen wide uptake across a gically relevant attributes of ff generation processes, defini ydrologic models. Hydrologic tershed processes from strear
	Hydrologic signatures are quan properties of hydrologic data so eco-hydrology to assess alterat of hydrological fields. Their app streamflow data, monitoring hy similarity between watersheds signatures allow us to extract n series, and are therefore seeing	titative metrics or indices that de eries, primarily streamflow. Hydr ions in flow regime, and have sin plications include extracting biolo ydrologic change, analysing runof , and calibrating and evaluating h neaningful information about wa g increasing use in emerging info	escribe statistical or dynamical ologic signatures were first us ce seen wide uptake across a gically relevant attributes of ff generation processes, defini ydrologic models. Hydrologic tershed processes from strear rmation-rich areas such as glo
	Hydrologic signatures are quan properties of hydrologic data si eco-hydrology to assess alterat of hydrological fields. Their app streamflow data, monitoring hy similarity between watersheds signatures allow us to extract n series, and are therefore seeing scale hydrologic modelling, ma	titative metrics or indices that de eries, primarily streamflow. Hydr ions in flow regime, and have sin plications include extracting biolo ydrologic change, analysing runof , and calibrating and evaluating h neaningful information about wa g increasing use in emerging infor chine learning and large-sample	escribe statistical or dynamical ologic signatures were first us ce seen wide uptake across a gically relevant attributes of ff generation processes, defini ydrologic models. Hydrologic tershed processes from strear rmation-rich areas such as glo hydrology. This overview pape
	Hydrologic signatures are quan properties of hydrologic data si eco-hydrology to assess alterat of hydrological fields. Their app streamflow data, monitoring hy similarity between watersheds signatures allow us to extract n series, and are therefore seeing scale hydrologic modelling, ma describes the background and o	titative metrics or indices that de eries, primarily streamflow. Hydr ions in flow regime, and have sin plications include extracting biolo ydrologic change, analysing runof , and calibrating and evaluating h neaningful information about wa g increasing use in emerging infor chine learning and large-sample biologic signate	escribe statistical or dynamical ologic signatures were first us ce seen wide uptake across a gically relevant attributes of ff generation processes, defini ydrologic models. Hydrologic tershed processes from strear rmation-rich areas such as glo hydrology. This overview pape ture theory, reviews hydrologi
	Hydrologic signatures are quan properties of hydrologic data se eco-hydrology to assess alterat of hydrological fields. Their app streamflow data, monitoring hy similarity between watersheds signatures allow us to extract n series, and are therefore seeing scale hydrologic modelling, ma describes the background and o signature use across a variety o	titative metrics or indices that de eries, primarily streamflow. Hydr ions in flow regime, and have sin plications include extracting biolo ydrologic change, analysing runor , and calibrating and evaluating h neaningful information about wa g increasing use in emerging info chine learning and large-sample development of hydrologic signat	escribe statistical or dynamica ologic signatures were first us ce seen wide uptake across a gically relevant attributes of ff generation processes, defin hydrologic models. Hydrologic tershed processes from strear rmation-rich areas such as glo hydrology. This overview pape ture theory, reviews hydrologic soing hydrologic signature rese

Caption: Hydrologic signatures are metrics that we use to describe the complex dynamics of river flow

1 INTRODUCTION

5 1.1 Discovering the information in streamflow data

6 Streamflow timeseries show patterns: flood peaks and low flow periods, daily changes and seasonal 7 cycles. These patterns are examples of information in streamflow data. The information might 8 describe how the stream reacts to changes in weather, or what magnitudes and rates of change of 9 flow are usual for the stream. Streamflow patterns depend on the physical characteristics of the 10 watershed, telling a story about the path of water from precipitation to streamflow. Flow patterns in turn affect the stream's environment, informing us about riparian conditions and habitats. This 11 12 paper describes how hydrologists use hydrologic signatures to extract this wealth of information 13 from streamflow.

14 **1.2** What is a hydrologic signature?

15 Hydrologic signatures are quantitative metrics that describe statistical or dynamic properties of streamflow. They are also known as hydrologic metrics, hydrologic indices, or diagnostic signatures. 16 17 Hydrological signatures range from simple statistics such as the mean and quantiles of the timeseries, to complex metrics such as descriptors of recession shapes that are related to the 18 19 storage-discharge behaviour of the watershed (Figure 1). Hundreds of different hydrologic 20 signatures have been proposed, for example a review of signature choice and redundancy 21 considered 171 signatures (Olden and Poff, 2003). To organise and describe signatures, several 22 categorisations have been proposed. 23 An early and well-known categorisation groups signatures into five ecologically-important features

- of flow regimes: magnitude, timing, frequency, duration and rate of change (Richter et al., 1996)
 (Table 2). This work built on a previous suggestion to group signatures by flow variability, pattern of
- the flood regime and extent of intermittent conditions (Poff and Ward, 1989). Many subsequent

 1 authors use the five categories. Notably, Poff et al. (1997) use the categories to quantify the natural

- 2 flow regime of a river, proposing that these components completely describe the flow characteristics
- 3 of importance to the aquatic ecosystem. Based on the categories, Richter et al. (1996) went on to
- 4 propose five statistical signature types for describing hydrologic alteration caused by human
 - 5 influence. Those categories were: flow magnitude, magnitude and duration of annual maxima,
 - 6 timing of annual maxima, frequency and duration of high and low flow pulses, and rate and
- 7 frequency of streamflow change.

Туре	Signature Examples	Ecological Relevance
1. Magnitude	Flow magnitude by year or	Describes wetted area and availability of
	month	habitat
2. Timing	Seasonal timing of annual	Describes whether life-cycle requirements
	maxima and other annual flow	of instream species are met
	events	
3. Frequency	Frequency of events such as	Influences population dynamics by
	floods or droughts	controlling reproduction or mortality events
		for instream species
4. Duration	Length of time for which a	Controls life cycle phases; controls
	specific flow condition occurs	accumulated impact of floods or droughts
5. Rate of Change	Rate of change of flow	Can strand organisms above the water's
	magnitude and stage height	edge, and strand plant roots above the
		reach of groundwater

- 8 Table 1. Categorisation of signatures described by Richter et al. (1996)
- 9 Signatures may purely describe the streamflow timeseries (e.g. mean and quantiles of timeseries) or
- 10 may describe a watershed process (e.g. recession shapes related to storage-discharge behaviour).
- 11 McMillan (2020) proposed an alternative categorisation that differentiates between statistics- and
- 12 dynamics-based signatures, and between signatures at different timescales (Table 2).

Туре	Description	Examples
1. Timeseries Visuals	Visual interpretations of	Double peaks in streamflow,
	timeseries data	diurnal cycles
2: Quantified Event Dynamics	Numerical descriptors of	Recession shapes, flow
	event-scale dynamics	generation thresholds
3: Quantified Seasonal	Numerical descriptors of	Rising limb density, baseflow
Dynamics	dynamics, averaged over time	index
4: Seasonal Statistics	Statistical descriptors of the	Runoff ratio, shape of the flow
	flow distribution	duration curve
5: Mini-model	Quantities derived from highly	Storage volumes, regression
	simplified models	relationships

13 Table 2. Categories of signatures suggested by McMillan (2020)

14 The example signatures in Table 2 show that hydrologic signatures often build on earlier ideas. For

- 15 example, early descriptions were published for the flow duration curve (the cumulative distribution
- 16 function of flow that shows the percent of time that flow values are exceeded; Searcy, 1959),
- baseflow index (proportion of flow that is baseflow; Kunkle, 1962), and Pardé coefficients for flow
 - 18 variability (ratios of monthly mean discharges to the mean annual discharge; Pardé, 1933). However,

the concept of combining these metrics into a complete description of the flow regime did not occur until later.

Figure 1: Examples of commonly-used hydrologic signatures calculated as metrics of the streamflow timeseries

1.3 Hydrologic signatures in other fields

Hydrologic signatures originate in the idea that visible hydrologic patterns can tell us about the underlying system. We can use accessible measurements to reveal inaccessible or complex processes: for example, using streamflow to learn about subsurface or overland flow. Other environmental fields use signatures similarly, such as using water level fluctuations in a wetland to learn about hidden inflows and outflows (Mitsch and Gosselink, 1986), or using ocean surface patterns to learn about deep currents (Millot, 1999). In tracer studies, isotope ratios in a water sample are called signatures, as they help identify the source of the water in time or space (Klaus and McDonnell, 2013; Sprenger et al., 2019; Xue et al., 2009). In remote sensing, reflectance ratios between wavelengths are called spectral signatures, as they can identify surface properties such as snow cover (Dozier, 1989) or water quality (Doxaran et al., 2002). In geomorphology, signatures of drainage density are even used on Mars to interpret the ancient hydrological cycle (Hynek et al., 2010). In all these examples, signatures allow scientists to interpret measurements and extract information about the environment.

This review focuses on signatures describing streamflow data. However, signatures are applied to other hydrologic data types. Signatures combining flow and temperature data provide information on alpine snowfall and melt (Horner et al., 2020; Schaefli, 2016). Signatures were used to categorize groundwater dynamics (Heudorfer et al., 2019), and to identify soil moisture dynamics that are less affected by soil heterogeneity (Branger & McMillan, 2019). Recent innovations include signatures created for karst hydrology (Hartmann et al., 2013), glacio-hydrology (He et al., 2018; Mackay et al.,

1 2018), and for total water storage anomalies from GRACE data (Fang and Shen, 2017). These

2 examples demonstrate the continuing and expanding use of signature methods in hydrology.

3 2 APPLICATIONS OF HYDROLOGIC SIGNATURES

4 The following sections describe three main types of hydrologic signature applications: ecohydrology,

5 watershed processes, and modelling (Figure 2).

7 Figure 2. Summary of the three categories of hydrologic signature applications discussed in this paper

8 (Eco-hydrology, Watershed Processes and Modelling), with cross-cutting methodological 9 considerations.

2.1 Ecohydrology, environmental flows and hydrologic alteration

An important concept in ecohydrology is that the flow regime of a river controls channel and riparian
habitat, and the suitability of the river to support freshwater species (Gordon, 2004). Flow velocity
and its variability close to the streambed affects instream ecosystems via multiple mechanisms.
Flows control bed sediments, nutrient levels, availability of refuges, and frequency of disturbance;
and therefore control species dispersal, habitat use, resource acquisition, predator-prey interactions,
and competition (Hart and Finelli, 1999).

first field to create catalogues of signatures that summarize the flow regime. Two foundational
 papers use signatures such as annual maximum flows and numbers of high and low flow events to

20 characterise biologically-relevant flow attributes (Poff et al., 1997; Richter et al., 1996). Their

signatures emphasise the flow extremes – floods and low flows – that control channel shape and
 species survival.

3 2.1.1 Environmental flows to preserve instream habitat

Stream habitat is influenced by multiple aspects of the flow regime. Flow variability, from milliseconds to decades, affects which species dominate the ecosystem (Biggs et al., 2005). For example, invertebrates may tolerate variability only above or below certain limits (Konrad et al., 2008). Species may have very specific flow requirements, such as the endangered yellow-legged frog (Rana boylii) in California that relies on a consistent rate of river level fall in summer, allowing tadpoles to following the receding water's edge (Bondi et al., 2013). Species requirements can be encoded as signatures, for example by quantifying flow variability, or frequency and duration of unacceptable flow conditions. To encompass all the flow attributes required to sustain a healthy ecosystem, water managers use the term "environmental flows" (Acreman, 2016). Methods to assess whether a river meets environmental flow requirements are diverse, but typically rely on hydrologic or hydraulic signatures to rate habitat suitability (Tharme, 2003).

Species	Periphyton and invertebrates (various species)	Mayfly (Baetis muticus, Baetis rhodani, Ecdyonurus venosus)	Rainbow trout (Oncorhynchus mykiss)	Yellow-legged frog (<i>Rana boylii</i>)
Signature	Frequency of floods 3x the median flow	Flow Duration Curve	Flow variability (coefficient of variation of flow)	Stage height recession rate
Explanation	Relates to frequency of disturbance events	Relates to shear stress distribution that controls grazing behaviour	Low flow variability relates to cleaner water and larger food production area	Egg masses and tadpoles rely on steady fall of water level in summer
Reference	Clausen and Biggs, 1997	Ceola et al., 2014	Jowett and Duncan, 1990	Bondi et al., 2013

Table 3: Four freshwater species highlighted in this article and the hydrologic signatures that help
 explain their abundance in instream environments.

To rate habitat suitability, hydrologists search for signatures that explain species abundance, and
where ecosystem theory explains why those flows are needed (Table 3). This method needs
measurements of species abundance at large numbers of sites. Commonly measured species include
periphyton (streambed organisms such as algae), invertebrates, and fish species. For example,
Jowett and Duncan (1990) analyse 130 sites in New Zealand and find that high flow variability is

Page 7 of 32

WIREs Water

- 1 negatively correlated with mean water velocity and relative bed stability, and positively correlated
- 2 with trout habitat. Clausen and Biggs (1997) find that the 'Fre3' signature, i.e. the frequency of
- floods higher than three times the median flow, predicts periphyton and invertebrate density
 because Fre3 flows have sufficient energy to disturb sand and gravel riverbed sediments. Once a
- 5 relationship between signatures and species is established, it can be used to predict basin-wide
- 10 6 species distribution (Ceola et al., 2014).

For general environmental flow assessments, not aimed at one particular species, the best choice of signatures is less clear. Yarnell et al. (2020) propose a method based on "functional flows", i.e. flow features that affect species lifecycles, such as fall pulse flows, spring recessions, and summer low flows. For each feature, signatures are selected corresponding to flow magnitude, timing, frequency, duration and/or rate of change. Online software is available to calculate these signatures in seasonal, Mediterranean climates (Patterson et al., 2020). Archfield et al. (2014) instead try to overcome subjectivity in signature choice by using their seven "fundamental daily streamflow statistics" for all rivers, including the moments of the flow series and descriptors of the seasonal cycle. Refer to the section "Choosing Signatures" for a wider discussion of the rationale for signature choice.

25
26172.1.2Detecting hydrological change

An important motivation for using signatures to quantify environmental flows is to understand how humans have altered river systems. Modified flows encourage invasive species, to the detriment of native species that rely on natural water levels, seasonal flow changes, and floodplain connectivity (Bunn and Arthington, 2002). Signatures can be compared before and after a hydrologic change, to quantify how disturbances such as dams, levees, urbanisation, afforestation or drainage change the flow regime (Archer and Newson, 2002; Poff et al., 1997). The widely-used ELOHA framework (Ecological Limits Of Hydrologic Alteration; Poff et al., 2010) uses signatures to classify rivers by flow and geomorphological regime, quantify flow changes from baseline conditions, and understand the ecological impacts of those changes.

The most disruptive changes for instream ecosystems are depleted high flows, homogenization of flows and erratic flows (Carlisle et al., 2017) as well as artificially reduced flow that reduces water velocity, depth, wetted width and therefore habitat and species diversity (Dewson et al., 2007). Larger changes in flow magnitude always cause greater ecological change, but exact relationships between flow signatures and ecological change are place-specific (Poff and Zimmerman, 2010). Most studies analyse changes in flow magnitude (e.g. flow peaks, average flow, baseflow and daily variation), whereas changes in flow timing, frequency, duration and rate of change are less commonly studied.

Evaluating signature changes on a large scale can help to identify the underlying causes. Mahe et al. (2013) used signatures to describe decadal changes in the baseflow and flow variability of African rivers, and investigated the influence of climate, land use and other anthropogenic changes. As well as past changes, signatures can help summarise how flows may change in future. By calculating signatures from future flows predicted by coupled climate and hydrologic models, we can identify changes such as timing of the snowmelt peak or the duration of summer low flows (Hayhoe et al.,

2007). Signatures are valuable to identify causes and impacts of flow regime changes, in the past and for the future.

2.2 Watershed Processes

While ecohydrology uses signatures to study how flow regime affects instream habitat, hydrologic process research uses signatures to study how the upstream watershed affects the flow regime. Using watershed attributes (e.g. soil, geology and topography) to predict flow signatures enables us to estimate flows and stream habitat in ungauged basins. To this end, many early signature papers describe relationships between watershed attributes and signature values (Jowett and Duncan, 1990; Poff and Ward, 1989). It is also useful to reverse the inference and use flow signatures to predict watershed processes. Examples of process predictions could include whether overland flow occurs, or how connected is water in the hillslopes and channel. By using intensively studied basins to establish relationships between signatures and processes, we can transfer process knowledge to any watershed with a flow gauge (McMillan, 2020). The link between signatures and watershed processes is the basis for several applications described in later sections, such as using signatures to quantify similarity between watersheds, and evaluating physical realism of hydrologic models. Sometimes the link between watershed processes and signatures is clear, such as when winter

snowfall causes a spring snowmelt peak, or when karst geology causes high baseflow. McDonnell et al. (2007) argue that both watershed descriptors and hydrologic signatures should focus on how watersheds function. Currently, this is not the case and many signatures such as low flow frequencies are only weakly related to watershed function. A useful test of the relationship is how well signatures can be predicted from watershed attributes. Eng et al. (2017) tested 612 signatures and found that only 40% could be reliably predicted from U.S. watershed attributes. Signatures describing mean flows and high flows are typically well-predicted, while signatures describing low flows are poorly predicted (Addor et al., 2018; Eng et al., 2017; Zhang et al., 2014).

Well-predicted, م smoothly-varying HS	Тс	opo.		CI	ima	te					So	ils						Ve	eget	atic	n				Ge	oloç	ју		
Mean annual discharge -			•	•			•				•				·			•	•	•		0	٠	•	-				1
Mean winter discharge -		0	•	•	0	•	•	•						٠	•			•	•	,		0	•					•	
Mean half-flow date -		•	0		•	•	•	•	0	•	•			0	0			•	•			0	•	•	0		٠	0	
Q95 (high flow) –			•	•	0		•	0			0				0			•	•	×		0		•					
Runoff ratio -		•	•	•	•		•	0	•	0	•				٠			•	•				•		•				
Mean summer discharge –		•	•	•	•	•	•				•				•		0	•	•	0					•				•
Baseflow index -		•	•	•	•	0	•	0	0		•	0	•	0			0	•		0		•		•	•	0	0	•	•
Q5 (low flow) _		0	•	•	•	•	•			0	•				•		0	•	•			0	•		0	÷.			•
Frequency of low-flow days -		0	•	•	•	•	•	•	0		•	•	0	0			•	•	•	0		0			•		0	0	•
Frequency of high-flow days -		0	0	•	0		•	•			•		0		0			•	•	•		0							-
Mean duration of high-flow events -			÷		0	•				4									•	•			•						
Mean duration of low-flow events -		0		•	0	•		•											•	•		0	٠	-					
Streamflow-precipitation elasticity -	18	•	0	•	•	•	•		0	0	•		0		•			•	0			0							•
Slope of the flow _ duration curve	×	0	0		•							0		•					×						•				
No flow frequency -		0	0		0	•					+	÷		3				·	۰	*	j.	0	0	0					
Poorly-predicted, abruptly-varying HS	Area -	Mean elevation -	Mean slope -	Seasonality and timing	Fraction of precipitation _	Aridity -	Frequency of high _ precipitation events	Duration of high _	Timing of high _	Timining of low precipitation events	(Pelletier et al. 2016)	Soil depth - (STATSGO)	Sand fraction -	Silt fraction -	Clay fraction -	Water fraction -	Other fraction -	Forest fraction -	LAI maximum -	Green vegetaion _ fraction difference	Frction of dominant	Dominant - land cover	Root depth 50% -	Root depth 99% -	Dominant geological class -	Fraction of dominant _ geological class	raction of carbonate rocks -	Subsurface porosotiy -	Subsurface permeability -
 Spearman rank corr. and hydrological sign 	bev	vtee re [-	n at ·]	tribu	ite							Inf inc	luer	nce (se ii	of pi n me	redic ean :	tor squ	in th arec	ne ra l err	ando or (om f IncN	ores (ISE)	st:) [%]			ш		
													5	•	15	•	25			35		4	5		55	;			
1 -0.5 -0.25		0		().25		0.	5																					

Figure 3: Comparison of the influence of catchments attributes (x axis) used to predict hydrological
signatures (y axis) with a random forest method for 671 U.S. watersheds with minimal human
influence. Large, brightly coloured circles imply strong correlations and high influence. The signatures
are ordered with better predicted signatures at the top. The strongest relationships are between
climate attributes and mean or high flow signatures, with topography, soils, vegetation and geology
having low predictive power. Figure reproduced with permission from Addor et al. (2018)

A compelling explanation for differences in signature predictability is that climate descriptors (e.g. aridity, snow fraction) provide most of the predictive power, while watershed descriptors (e.g. soil type, forest cover, slope) provide little predictive power (Figure 3; Addor et al., 2018; Merz and Blöschl, 2009). Therefore, signatures that relate closely to climate characteristics are well predicted. At the seasonal scale, wet or impermeable watersheds transfer climate variability almost directly in hydrologic variability, explaining why seasonal, high flow signatures are more easily predicted (Gnann et al., 2020b). However, by focusing on situations where expert knowledge suggests that

hydrology is more important than climate, relationships can be uncovered. For example, watershed
drainage pattern helps to predict flood signatures (Oppel and Schumann, 2020), and information on
surface waterbodies helps to predict baseflow signatures (Beck et al., 2013).
The weak relationship between watershed descriptors and signatures contradicts extensive field

evidence that shows how watershed features control streamflow responses. Therefore, there is
great potential to create new watershed descriptors that better characterize hydrologic behaviour
and flow signatures (Gnann et al., 2020a). In turn, this would allow for better predictions of the flow

8 regime in ungauged watersheds.

15 9 2.2.1 Defining similarity between watersheds

Analysing hydrologic similarity enables us to transfer information between similar watersheds. We might use insights from a similar watershed to design monitoring networks or models in a new watershed, or to estimate the impacts of land use or climate change (Wagener et al., 2007). Similar watersheds will have similar ecology and can benefit from similar conservation efforts and environmental flow regulations (Kennard et al., 2010). Similarity measures can also pick out watersheds that behave differently, such Australia and southern Africa that have more extreme flows relative to mean flow than on other continents (McMahon et al., 2007). Often, a similarity measure is used to define clusters (also called classes) of similar watersheds. Many generic clustering algorithms are available, such as hierarchical clustering, k-means clustering, or Bayesian mixture modelling (Jain et al., 1999). Using signatures as the similarity measure creates clusters that are hydrologically similar in terms of flow regimes, instream ecosystem and watershed processes. Although clustering can be based on physical watershed attributes instead (topography, land cover, etc), this produces substantially different groupings (Ali et al., 2012).

eliez

XII

1,000

XII

250 500

Ν

1

Kilometers

Figure 4: Flow regime classes for 830 stream gauges in Australia, clustered using 120 hydrologic
 signatures. The signatures describe mean and variance in the streamflow magnitude (average, low,
 high), frequency (low, high), duration (low, high), timing and rate of change. Note that some classes
 are geographically compact (e.g. 2) while some are dispersed (e.g. 12). Figure adapted from Kennard
 et al. (2010b).

Similarity in signatures implies a combination of climate similarity and process similarity. This creates clusters that are largely geographically compact (climate influence), but with some geographical spread (process influence). For example, Kennard et al. (2010b) use signatures to cluster Australian watersheds. They find compact clusters influenced by seasonal timing of flow, flood magnitude, and baseflow magnitude, but some outliers such as highly intermittent streams, which are driven more strongly by process and have a wide geographical distribution (Figure 4). Climate typically dominates clusters derived directly from signature similarity (Coopersmith et al., 2012; Sawicz et al., 2011). Therefore, Knoben et al. (2018) recommend separating climatic and hydrological similarity when deriving clusters.

An alternative to signature-based clusters is to use climate or watershed descriptors to derive clusters, and look for similarities in signature values in each cluster. Climate-based clusters such as the Köppen–Geiger classes produce different patterns to signature-based clusters (Jehn et al., 2020). However, climate descriptors can be targeted towards creating hydrology-relevant clusters, by using descriptors such as aridity that is related to the water balance (Berghuijs et al., 2014). Instead of looking at signature values within in a cluster, a recent proposal is to use hydrological archetypes. These are graphs of the median annual hydrograph of all watersheds in the cluster, with upper and lower percentiles, giving an overview of the hydrological behaviour. These visual representations integrate the information in multiple signatures in an intuitive way (Lane et al., 2018).

An important application of hydrologic similarity is to estimate how vulnerable watersheds are to climate or land use change. We can already see the impacts of climate change on flow signatures, as watersheds move between clusters over time as their climate changes (Sawicz et al., 2014). When planning for future impacts, watersheds with similar signature values are assumed to react similarly to climate changes. We can predict future watershed behaviour using space-for-time substitution, i.e. looking for similar watersheds that already have climates similar to future predictions in the area of interest (Sivapalan et al., 2011).

31 2.3 Modeling

As signatures can quantify hydrologic function, it is a natural progression to use signatures in the
As signatures can quantify hydrologic function, it is a natural progression to use signatures in the
pursuit of models that accurately represent hydrologic function. Signatures are used at all stages of
the modelling process, from model structure selection, through calibration and evaluation.

52 35 2.3.1 Calibration

The first uses of signatures for modelling were for calibration. In calibration, parameters are
adjusted manually or automatically to optimise model performance. Manual calibration procedures
are often complex and link parts of the hydrograph to different parameters, for example using base
flow periods to set base flow parameters (Boyle et al., 2000). Automatic calibration procedures are

Page 13 of 32

 WIREs Water

usually simpler, aiming to optimise a performance measure. Performance measures are commonly based on the sum of squared errors between observed and modelled flows, such as the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970). However, these performance measures are criticised because they lack a clear link to hydrologic function, and so it is unclear which parameters should be changed to improve performance. By replacing the sum-of-squared errors measure with a measure composed of one or more signatures, we can maintain the link to watershed function in an automatic calibration procedure. Drawing on manual calibration expertise, hydrologists have long incorporated flow regime signatures into automatic calibration. Sugawara (1979) used hydrograph volume and recession slope as performance measures, while Refsgaard and Knudsen (1996) combined flow duration curves and annual maximum flow signatures with NSE and visual comparison of hydrographs. Hogue et al. (2000) mimic a complex multi-objective manual approach in an automatic procedure, and signatures from multiple data sources can complement flow series during calibration (Hay et al., 2006; Hingray et al., 2010). More generally, Gupta et al. (1998) argue that multi-objective calibration is necessary given trade-offs between a model's ability to match different parts of the hydrograph. Building on this, Gupta et al. (2008) state that given the high dimensionality of the data available for calibration and the model parameter space, this information should not be compressed into a one-dimensional performance measure. Instead, they recommend model calibration against multiple signatures, each related to specific parameters. Kavetski et al. (2018) name the approach "signature-domain calibration", in contrast to "time-domain calibration". The call for model calibration using flow signatures was widely taken up, with several adaptations. Some studies use signatures to evaluate the modelled flow regime when data is scarce, or when precipitation and flow data are available for different time periods. These studies choose signatures that summarise the flow regime such as the flow duration curve (Westerberg et al., 2011) or spectral density of the flow signal (Montanari and Toth, 2007; Winsemius et al., 2009). Several studies use signature-based calibration to search for models that achieve "hydrologic consistency", i.e. that reproduce multiple flow signatures (Martinez and Gupta, 2011; Pechlivanidis et al., 2014; Pokhrel et al., 2012; Sahraei et al., 2020; Shafii and Tolson, 2015). The hope is that these models provide a realistic representation of a range of hydrologic processes. For example, He et al. (2018) use signature-based calibration to produce stable and realistic model parameters in a glaciated basin, and Shafii et al. (2017) use signatures based on the L'vovich partitioning framework to create models with realistic partitioning between quick and slow flow, infiltration, and evapotranspiration. If the selected signatures capture all the information in the flow signal, they are referred to as "sufficient statistics". The opposing view to sufficiency is that careful selection of signatures enables us to match some parts of the hydrograph, while ignoring parts that are less important or have known errors (e.g. timing errors). In this way, the user controls the weighting of different aspects of model performance. Signatures can focus the calibration on just one part of the hydrograph, such as high flows (Mizukami et al., 2019) or low flows (Pfannerstill et al., 2014). We can also calibrate a model using a structured approach, starting with signatures at annual or longer timescales, and progressing to shorter timescales (Shamir et al., 2005a). Note that none of the studies above apply signature

1 calibration in the way that Gupta et al. (2008) suggested – by matching signatures to individual

- parameters. A recent example that does achieve that type of calibration is a manual, signature based re-calibration of the distributed J2000 model (Horner, 2020). One reason that such studies are
- 4 rare is that correspondences between parameters and signatures differ between watersheds,
- 5 complicating transferability of the method (Guse et al., 2017).

When calibrating models against signatures, we often want to account for model uncertainties, to create probabilistic streamflow predictions. Many of the studies described above use approaches similar to the Generalized Likelihood Uncertainty Estimation framework (Beven and Freer, 2001). In this framework, simulations are accepted (and/or weighted) if the modelled signatures lie within some tolerance of the observed signatures. This approach has been criticized because it does not conform to a strict statistical definition of a likelihood function. More recently, the Approximate Bayesian Computation (ABC) technique has been proposed to calculate probabilistic parameter distributions without the need to compute a likelihood function. This is beneficial for signature-domain calibration, as it would be difficult to create signature likelihood functions. Kavetski et al. (2018) provide clear guidance on how to apply ABC for signature-domain calibration, and Fenicia et al. (2018) investigate practical questions such as the impacts of number of signatures and length of data series, and the ability of signature-domain calibration to cope with model deficiencies.

2627182.3.2Evaluation of Model Structure and Parameters

Signatures can be used to design hydrologic model structure, often in a multi-model framework such as FUSE (Clark et al., 2008) or SUPERFLEX (Fenicia et al., 2011). These frameworks offer a mix-and-match approach to build a model from pre-designed components. In some cases, signature values can be directly mapped to model decisions, such that a given signature value implies a given model choice. For example, signatures based on flow, precipitation and soil moisture data were targeted at specific model decisions in the FUSE framework (McMillan et al., 2014, 2011), with model tests confirming the data analysis (Clark et al., 2011).

A model can be chosen from a set of possible structures, by running each one and evaluating its ability to reproduce multiple signatures (e.g. Gunkel et al., 2015). Here, signatures provide an independent test of whether the model is physically realistic. Example applications are to evaluate sequentially more complex SUPERFLEX models (Euser et al., 2013), to investigate why different models succeed in watersheds with different hydrologic characteristics (Kavetski and Fenicia, 2011), and to compare geology vs topography discretisations in a distributed model (Fenicia et al., 2016). Testing for realistic signature values helps avoid excessive model complexity where unrealistic parameter values compensate for one another (Hrachowitz et al., 2014), while retaining the complexity needed to reproduce streamflow dynamics (Farmer et al., 2003; Jothityangkoon et al., 2001). Using signature evaluation to progress from simple, large scale models to more complex models including finer-grained processes embodies the 'downward' approach to model development proposed by (Klemeš, 1983).

5538After a model is built and calibrated, it may still predict inaccurate flows. Analysis of how well the5639model reproduces different signatures can help identify which parts of the model are failing. This5740draws from previous studies that identify which model decisions influence which signatures. For5941example, Coxon et al. (2014) show which FUSE model decisions influence water balance and flow

Boer-Euser et al. (2016) test a new method to set model soil depth based on co-evolution theory
that estimates plant rooting depth, and use signatures to evaluate its success across wet and dry
watersheds.

Figure 5: Model bias error when a national model is used to simulate three signatures (baseflow
index, rising limb density, flow volume), using data from 485 watersheds in New Zealand. These
graphs are used to test hypotheses about how model performance varies with watershed area. Bias
in all three signatures is lower for large watersheds. Figure reproduced from McMillan et al. (2016).

2.3.3 Signature regionalisation for predictions in ungauged basins

Hydrological signatures provide a powerful tool for predicting flow in ungauged basins. Previous methods relied on regionalizing model parameters – estimating parameters for the ungauged basin by transferring parameters from nearby or physically similar watersheds, or regressing parameter values on watershed attributes. However, these methods were often unsuccessful (Oudin et al., 2008). Instead, signatures can be used in a three-part method (Figure 6): (1) Relate watershed attributes to signatures in gauged basins, using regression on watershed attributes, (2) Use that relationship to estimate (regionalize) signature values for the ungauged basin, (3) Use the regionalized signatures as a performance metric to calibrate a model for the ungauged basin. This method works because watershed attributes are more closely related to signatures than model parameters, and because signature regionalization is independent of the choice of model and model structural error. The method saw significant development and success during the Predictions in Ungauged Basins (PUB) decade (Hrachowitz et al., 2013; Wagener and Montanari, 2011).

Figure 6: Schematic illustration of how hydrologic signatures are used in regionalisation. Signatures
are regionalised to an ungauged basin, and then those signatures are used to condition a hydrologic
model for the ungauged basin.

Steady progress has been made in advancing the signature regionalization method. The choice of signatures is guided by research into which signatures vary more smoothly across space and are more accurately predicted from watershed attributes (Addor et al., 2018). The regionalization method has advanced from regression to machine learning methods such as artificial neural networks (Beck et al., 2015) or random forests (Prieto et al., 2019; Zhang et al., 2018). Many studies stress the importance of including uncertainty estimation at all stages of the process, from data uncertainty affecting the signature values (Westerberg et al., 2016), to using a probabilistic Page 17 of 32

1

2		
3	1	regionalization model (Prieto et al., 2019), to retaining an ensemble of models that adequately
4 5	2	predict the regionalized signatures (Yadav et al., 2007).
6	3	The method can be scaled up globally, both for the signature regionalisation (Beck et al., 2015
/ 8	1	2013) and the model calibration (Yang et al. 2019) and is particularly valuable in locations lacking a
9	- 5	dense network of streamflow gauges (Kanangaziwiri et al. 2012: Ndzahandzaha and Hughes, 2017:
10	S C	Vienseri and Malature 2010) Where evolutions the regionalized signatures can be combined with
11	0	visessri and Micintyre, 2016). Where available, the regionalised signatures can be combined with
12	/	local, expert knowledge of watershed dynamics (Bulygina et al., 2012; Kellener et al., 2017) and
13	8	previously regionalized signatures, e.g. the soil infiltration curve number, or Baseflow Index
15	9	predicted from soil types in the UK (Almeida et al., 2016). Overall, regionalisation of signatures is a
16	10	robust, generalizable tool for predictions in ungauged basins (Zhang et al., 2008).
17 18	11	3 METHODS IN USING HYDROLOGIC SIGNATURES
19 20 21	12	3.1 Choosing signatures
22	13	So far, we have discussed generalised uses of hydrologic signatures. However, any application must
23	14	choose which signatures to use. The choice of signatures is important to: (1) ensure individual
24 25	15	signature accuracy and robustness; (2) create a complete and independent set of signatures; (3)
26	16	choose signatures relevant to the specific application. We will discuss each in turn.
27		
28	17	Individual signature choice (1) plays a role because there are often multiple signatures that capture a
29 30	18	given aspect of the flow regime. For example, several common signatures quantify the frequency
31	19	and duration of high flow events, using different thresholds to define "high flow" based on flow
32	20	quantiles, or multiples of the mean or median flow. There are often additional choices in the
33	21	signature definition, such as the data timestep to use (Westerberg and McMillan, 2015). To assist
34 35	22	signature choice, Shamir et al. (2005b) recommend choosing signatures that are consistent, i.e.
36	23	produce similar values for different time periods, and distinguishable, i.e. produce different values
37	24	for watersheds with different hydrologic functioning. McMillan et al. (2016) extend these
38	25	recommendations to five desirable signature properties, including low uncertainty, low sensitivity to
39 40	26	measurement design and watershed scale, and ability to discriminate between different hydrologic
41	27	responses. Schaefli (2016) adds that signatures used in model evaluation should have the
42 43	28	discriminatory power to constrain the range of acceptable model parameters.
44	29	When choosing sets of signatures (2), the signatures should cover all required aspects of the
45 46	30	watershed function, while limiting redundancy or overlap. Previous studies commonly select
47	31	signatures to cover a range of flow behaviour (Westerberg et al., 2016), range of timescales (Sawicz
48	32	et al., 2014), or range of watershed functions (Yilmaz et al., 2008); and may reuse previous sets of
49	33	signatures (Coxon et al., 2014). A selection of 5-10 signatures to summarize the flow regime is typical
50 51	34	(e.g. Euser et al., 2013). Redundancy can be avoided by calculating the correlation between
52	35	signature values for a large set of watersheds, and selecting independent signatures with low
53	36	correlations. Principal component analysis (PCA) is often used to identify combinations of signatures
54	27	that evolutions in this proportion of variability between watersheds, while remaining relatively
55 56	20	independent (Clausen and Biggs 2000: Olden and Poff 2002: Prieto et al. 2010) Avoiding or
57	20	accounting for highly correlated signatures improves outcomes when conditioning models on the
58	70	signature values (Almeida et al. 2016)
59	40	Signature values (Allileiua et al., 2010).
60		17

When selecting signatures for an application (3) the choice of signatures can impact the data analysis, modeling or calibration outcomes. Preferred signatures may depend on location, and may need to be adapted when transferring between sites. For example, McMillan and Srinivasan (2015) adapt a signature describing runoff generation thresholds by adding the antecedent wetness condition as an extra predictor controlling runoff. In modeling, the best signatures to constrain the model predictions depend on the watershed characteristics (Coxon et al., 2014). Signatures describing the water balance constrained parameters more strongly in groundwater-dominated watersheds, while signatures describing timeseries dynamics and the flow duration curve constrained parameters more strongly in rainfall-driven watersheds. Choosing signatures that span the range of model function is important for calibration, for example choosing signatures based on the L'vovich partitioning framework can improve calibration results (Shafii et al., 2017).

3.2 Scaling

A little-explored aspect of flow signatures is how their interpretation changes with scale, and how signature values aggregate or change along a river network. For example, when two tributaries meet, how do signature values in the downstream reach relate to the values in the tributaries? In general, hydrologic function shows complex scaling behaviour: dominant processes often change with scale, and emergent behaviour at watershed scales is not easily modelled as the accumulation of smaller-scale behaviour (Blöschl, 2001). Signatures have the potential to identify scale-independent dynamics, for example they have been used to identify soil moisture dynamics that are consistent beyond the small scale of soil moisture sensors (Branger and McMillan, 2019). In ecology, flow signatures are used to group watersheds into scale-independent classes according to their dynamics, before developing within-class relationships between flow alteration and ecological responses (Kennard et al., 2010b; Poff and Ward, 1989). However, signatures can sometimes be sensitive to scale, such as modelled future changes in signatures that depend on climate model scale (Maina et al., 2019; Mendoza et al., 2016).

There is limited information about whether relationships between flow signatures and watershed processes change with scale. Most of these relationships are derived from studies in small, experimental watersheds, and may not apply in large basins. Some signatures become less meaningful at larger scales where flow dynamics represent a mixture of upstream tributaries. For example, diurnal cycles in flow indicate snowmelt and evapotranspiration processes, but mixing out-of-phase cycles from different tributaries blurs the signal. Faster water velocities preserve in-phase fluctuations throughout the stream network to produce strong cycles, but slower water velocities in the late summer cause out-of-phase fluctuations and weaker cycles (Wondzell et al., 2007).

Other processes show the same blurring of signature values with scale. At small scales, watershed aspect controls patterns of snowmelt and therefore creates differences in flow signatures, but these dynamics converge at larger scales as aspects average out (Comola et al., 2015). Similarly, when using isotopic signatures of water age, mean transit times tend to converge for larger watersheds that aggregate diverse upstream watersheds (Hrachowitz et al., 2010). For one standard method to determine water age based on seasonal tracer cycles in precipitation and streamflow, aggregation is a greater concern as mixes of tributary waters of different ages do not return the correct mean value

(Kirchner, 2016). However, using an alternative formulation for age calculation can reduce the
 aggregation bias (Danesh-Yazdi et al., 2017).

In some cases, downstream changes in signature values successfully provide information on how processes change with scale. For example, where diurnal cycles are preserved downstream, cycles with peaks later in the day suggest that the snowline is higher or further upstream (Lundquist and Cayan, 2002). Instead of blurring at larger scales, some processes become more complex as multiple flow sources enter a river. For example, recessions become more nonlinear as hillslope-scale, watershed-scale and riparian aquifer flows are added downstream (Clark et al., 2009; Harman et al., 2009). Alternatively, the extent of blurring may indicate how model structure should change with scale, for example as thresholds between antecedent wetness and runoff generation weaken at large scales (McMillan, 2012). In summary, caution is advised when using signatures to understand processes at very different scales to those for which the signatures were developed. There remains great scope to use well-instrumented watersheds to study how relationships between signatures and processes change with scale, and to use signatures to more accurately understand upstream processes.

⁴ 16 **3.3 Uncertainties**

Any signature calculated from hydrologic data is impacted by inherent data uncertainty. Sources of uncertainty in flow data occur in measurement techniques for individual gaugings, and in using those gaugings to create a stage-discharge rating curve (Kiang et al., 2018). Signatures using precipitation data are additionally subject to errors in interpolating that data to the watershed scale. All of the signature applications discussed in this paper – ecology and habitat assessment, process understanding and modelling – are affected by signature uncertainty. Ignoring uncertainty can lead to biased model parameters, unreliable predictions, and poor management decisions (McMillan et al., 2017, 2018; Renard et al., 2010). Therefore, to improve the reliability of these applications, uncertainty should be explicitly accounted for in the signature methods (Juston et al., 2012).

A general method for estimating uncertainty in a signature value is by using a Monte Carlo approach (Westerberg and McMillan, 2015). First identify the dominant sources of uncertainty in the underlying flow and/or rainfall data, perhaps by creating a perceptual model of uncertainty (Westerberg et al., 2017). Next, estimate the magnitude and distribution of each uncertainty component, using dedicated experiments or information from the literature. Repeatedly draw samples of each measurement (flow and/or precipitation) including uncertainty, and use the sample to calculate the signature. Using a large number of samples, aggregate the resulting signature values to find the estimated distribution of the signature: an example is shown in Figure 7, with signature uncertainties commonly exceeding ±20%. Mean and standard deviation of the signature can be calculated if needed. This process may in itself suggest methods for reducing the uncertainty. If extreme high flows are most uncertain due to out-of-bank events, then signatures might be adjusted to avoid those values., e.g. by adjusting the quantiles used to calculate the flow duration curve slope.

John Wiley & Sons

Figure 7: Relative uncertainty in 11 hydrologic signatures caused by uncertainty in the stagedischarge rating curve, for a watershed in New Zealand. The boxplot whiskers extend to the 5 and 95
percentiles, and the box covers the interquartile range. Signatures are as follows: QMEAN = Mean
flow, BFI = Base-flow index, SFDC = Slope of the normalised flow duration curve, QCV = Overall flow
variability, QLV = Low-flow variability, QHV = High-flow variability, QAC = Flow autocorrelation, QHF
= High-flow event frequency, QHD = High-flow event duration, QLF = Low-flow event frequency, QLD
= Low-flow event duration. Figure reproduced from Westerberg and McMillan (2015).

Beyond uncertainty in rainfall and flow data, signature uncertainty can occur due to a short flow record (Kennard et al., 2010a), flow data that is only available at coarse temporal scales (Poff, 1996), and uncertainty in the precise method used to calculate the signature (Dralle et al., 2017). To estimate the signature uncertainty resulting from these factors, the flow time series can be split into (possible overlapping) subsamples and the signature calculated for each one to obtain a range or distribution of signature values (Schaefli, 2016; Vogel and Fennessey, 1994). A similar approach for data from multiple locations is to subsample the data in space (Blazkova and Beven, 2009). Estimates of signature uncertainty should then be incorporated into signature applications. The applications discussed throughout this paper vary in their development of uncertainty methods. When using signatures to understand watershed processes, uncertainty has been recognised but not incorporated into our methods. Unquantified data uncertainty contributes to abrupt variations of signatures in space, and makes it harder to relate landscape characteristics with signature values (Addor et al., 2018). For eco-hydrologic assessment, uncertainty estimation has been incorporated

- into methods for detecting hydrologic change. Long streamflow records are needed to overcome
- natural variability and detect changes in the number and duration of exceedances of high- and low flow thresholds: 40-years for high flow, 60-year for low flow (Huh et al., 2005). The perceptual model
- ⁵⁷₅₈ 25 of uncertainty sources is important: treatment of streamflow errors as random vs non-random can

make the difference as to whether deforestation-induced changes in a flow duration curve over time can be detected (Juston et al., 2014).

In modelling, signature uncertainty methods are more fully developed. When signatures are used for model evaluation, a 'limits of acceptability' approach is commonly used, where model runs are accepted if they simulate signature values within estimated uncertainty bounds (Blazkova and Beven, 2009). Model runs can be scored according to the size of model signature errors compared to the width of the uncertainty bounds (Westerberg et al., 2020). In signatures regionalization methods, uncertainty methods are common and were previously discussed in the section "Signature regionalisation for predictions in ungauged basins". Accounting for uncertainty avoids overconditioning the regionalized model and produces more reliable results (Westerberg et al., 2016). When quantifying signature uncertainty for modelling applications, it is useful to check for unrealistic signature values. For example, unrealistic runoff ratio values may indicate errors in basin area or precipitation undercatch (Kauffeldt et al., 2013). These 'disinformative' data periods should be removed to prevent corruption of the modelling process (Beven and Westerberg, 2011). Given the significant potential for data errors in large-sample datasets such as from the Global Runoff Data

- Centre, this signature-based check provides valuable error identification.
- SUMMARY AND CONCLUSIONS

Hydrologic signatures are metrics that extract and summarise the information contained in streamflow. They range from simple statistics of the flow series, to complex descriptors of flow dynamics that relate to watershed processes. Signatures are commonly categorised according to whether they describe the magnitude, timing, frequency, duration or rate of change of flow.

This review described three main areas of application for hydrologic signatures:

(1) Ecohydrology, environmental flows and hydrologic alteration. Signatures provide an easy way to summarise the flow regime of a river. The flow regime controls the suitability of instream habitat for different species, with flow extremes and flow variability being particularly important. Species requirements can be encoded as signatures that must lie in defined ranges. The signatures and ranges are determined by establishing relationships between signatures and species abundance across large numbers of sites. Using these relationships, changes in signatures over time describe how river environments have been altered, and how these changes impact freshwater species.

(2) Watershed Processes. Signature values are related to upstream watershed processes. By relating signatures to the occurrence and strength of different processes, we can transfer process knowledge between basins. Conversely, by relating watershed attributes to signature values via regression relationships, we can estimate flow regimes in ungauged basins. These regression relationships are strongest between climate-related attributes and signatures of mean and high flow magnitudes. Similarity in signature values is used to define clusters of hydrologically-similar watersheds, that can share strategies for designing monitoring networks or models, and might react similarly to land use or climate change.

(3) Modeling. Signatures are used as performance measures in calibration, to require models to reproduce components of flow dynamics that relate to watershed function. Multi-objective

- 1 calibration against a range of signatures is typical. These calibration methods incorporate
- 2 uncertainty by allowing for errors in the signature values. Signatures can be used to create
- 3 hydrologic models for ungauged basins, by regionalizing signatures based on their relationship with
- 4 watershed attributes, and then using the signatures for calibration. Signatures are used to design
- 5 and test model structure and complexity, which is particularly useful in global models where spatial
- 6 differences in model structure may be necessary.
- 12 7 Extending from this wide range of signature applications, there remain multiple unsolved problems
- 13 8 and avenues for development. In modelling, we lack thorough knowledge of the correspondences 14 between model personations and flow signatures with therefore four examples where signatures
- 9 between model parameters and flow signatures, with therefore few examples where signature-
 - 10 domain calibration reduces the dimensionality of parameterisation methods. It would be beneficial
- 17 11 to design signatures with stronger relationships to watershed processes and model parameters, as 18 12 current signatures twoically relate to multiple processes (Gnapp et al. 2020a). Overall, the ability to
- 18 12 current signatures typically relate to multiple processes (Gnann et al, 2020a). Overall, the ability to
- 13 share and build on knowledge of signatures would be enhanced by greater consistency of signature
 - 14 choice between studies. Despite current limitations, new uses of signatures across different
- 15 hydrologic data types and for data-rich applications in global modelling and machine learning,
- 232416 suggest an expanding role for signatures in hydrology.

5 REFERENCES

- Acreman, M., 2016. Environmental flows—Basics for novices. Wiley Interdiscip. Rev. Water 3, 622–
 628.
- Addor, N., Nearing, G., Prieto, C., Newman, A.J., Le Vine, N., Clark, M.P., 2018. A ranking of
 hydrological signatures based on their predictability in space. Water Resour. Res. 54, 8792–
 8812.
 - Ali, G., Tetzlaff, D., Soulsby, C., McDonnell, J.J., Capell, R., 2012. A comparison of similarity indices for
 catchment classification using a cross-regional dataset. Adv. Water Resour. 40, 11–22.
 https://doi.org/10.1016/j.advwatres.2012.01.008
 - Almeida, S., Vine, N.L., McIntyre, N., Wagener, T., Buytaert, W., 2016. Accounting for dependencies
 in regionalized signatures for predictions in ungauged catchments. Hydrol. Earth Syst. Sci.
 20, 887–901. https://doi.org/10.5194/hess-20-887-2016
 - Archer, D., Newson, M., 2002. The use of indices of flow variability in assessing the hydrological and
 instream habitat impacts of upland afforestation and drainage. J. Hydrol. 268, 244–258.
 - Archfield, S.A., Kennen, J.G., Carlisle, D.M., Wolock, D.M., 2014. An Objective and Parsimonious
 Approach for Classifying Natural Flow Regimes at a Continental Scale. River Res. Appl. 30, 1166–1183. https://doi.org/10.1002/rra.2710
 - Beck, H.E., De Roo, A., van Dijk, A.I., 2015. Global maps of streamflow characteristics based on
 observations from several thousand catchments. J. Hydrometeorol. 16, 1478–1501.
 - Beck, H.E., van Dijk, A.I., de Roo, A., Dutra, E., Fink, G., Orth, R., Schellekens, J., 2017. Global
 evaluation of runoff from ten state-of-the-art hydrological models. Hydrol. Earth Syst. Sci.
 21, 2881–2903.
 - Beck, H.E., van Dijk, A.I., Miralles, D.G., de Jeu, R.A., Bruijnzeel, L.S., McVicar, T.R., Schellekens, J.,
 2013. Global patterns in base flow index and recession based on streamflow observations
 from 3394 catchments. Water Resour. Res. 49, 7843–7863.
- Berghuijs, W.R., Sivapalan, M., Woods, R.A., Savenije, H.H., 2014. Patterns of similarity of seasonal
 water balances: A window into streamflow variability over a range of time scales. Water
 Resour. Res. 50, 5638–5661.

John Wiley & Sons

1 2		
2	1	Beven K Freer I 2001 Equifinality data assimilation and uncertainty estimation in mechanistic
4	2	modelling of complex environmental systems using the GLUE methodology. I. Hydrol. 249
5	3	11–29. https://doi.org/10.1016/S0022-1694(01)00421-8
6	4	Beven, K., Westerberg, L. 2011, On red herrings and real herrings: disinformation and information in
/	5	hydrological inference Hydrol Process 25, 1676–1680
o Q	6	Biggs, B.J.F., Nikora, V.L. Snelder, T.H., 2005, Linking scales of flow variability to lotic ecosystem
10	7	structure and function. River Res. Appl. 21, 283–298. https://doi.org/10.1002/rra.847
11	, 8	Blazkova, S., Beven, K., 2009, A limits of acceptability approach to model evaluation and uncertainty
12	9	estimation in flood frequency estimation by continuous simulation: Skalka catchment. Czech
13	10	Republic. Water Resour. Res. 45.
14	11	Blöschl, G., 2001. Scaling in hydrology, Hydrol, Process, 15, 709–711.
15	12	Boer-Fuser, T. de, McMillan, H.K., Hrachowitz, M., Winsemius, H.C., Savenije, H.H.G., 2016. Influence
16	13	of soil and climate on root zone storage canacity. Water Resour, Res. 52, 2009–2024
1/ 10	14	https://doi.org/10.1002/2015W/R018115
19	15	Bondi CA Yarnell SM Lind A Llind A 2013 Transferability of babitat suitability criteria for a
20	16	stream breeding frog (Rana boylii) in the Sierra Nevada, California, Herpetol, Conserv. Biol. 8
21	17	88–103.
22	18	Boyle D.P. Gupta H.V. Sorooshian S. 2000 Toward improved calibration of hydrologic models:
23	19	Combining the strengths of manual and automatic methods. Water Resour, Res. 36, 3663–
24	20	3674
25	20	Branger, E., McMillan, H.K., 2019, Deriving hydrological signatures from soil moisture data. Hydrol
26	22	Process
27	23	Bulygina N Ballard C McIntyre N O'Donnell G Wheater H 2012 Integrating different types of
20	24	information into hydrological model parameter estimation. Application to ungauged
30	25	catchments and land use scenario analysis. Water Resour, Res. 48
31	26	https://doi.org/10.1029/2011WR011207
32	20	Bunn S.F. Arthington A.H. 2002 Basic Principles and Ecological Consequences of Altered Flow
33	28	Regimes for Aquatic Biodiversity Environ Manage 30 492–507
34	20	https://doi.org/10.1007/s00267-002-2737-0
35	30	Carlisle, D.M., Grantham, T.E., Eng, K., Wolock, D.M., 2017, Biological relevance of streamflow
30 37	31	metrics: regional and national perspectives. Freshw Sci. 36, 927–940
38	32	Ceola S. Bertuzzo F. Singer, G. Battin, T.L. Montanari, A. Binaldo, A. 2014. Hydrologic controls on
39	33	basin-scale distribution of benthic invertebrates. Water Resour, Res. 50, 2903–2920.
40	34	https://doi.org/10.1002/2013WR015112
41	35	Clark, M.P., McMillan, H.K., Collins, D.B., Kavetski, D., Woods, R.A., 2011, Hydrological field data
42	36	from a modeller's perspective: Part 2: process-based evaluation of model hypotheses.
43	37	Hydrol, Process, 25, 523–543
44	38	Clark, M.P., Rupp, D.F., Woods, R.A., Tromp-van Meerveld, H.I., Peters, N.F., Freer, J.F., 2009.
45 46	39	Consistency between hydrological models and field observations: linking processes at the
40 47	40	hillslope scale to hydrological responses at the watershed scale. Hydrol. Process. Int. 1, 23
48	41	311–319
49	42	Clark M.P. Slater A.G. Rupp D.F. Woods R.A. Vrugt I.A. Gupta H.V. Wagener T. Hav I.F.
50	43	2008 Framework for Understanding Structural Errors (EUSE): A modular framework to
51	44	diagnose differences between hydrological models. Water Resour, Res. 44
52	45	Clausen, B., Biggs, B., 1997, Relationshins between benthic biota and hydrological indices in New
53	46	Zealand streams, Freshw, Biol. 38, 327–342, https://doi.org/10.1046/i.1365-
54 57	47	2427 1997 00230 x
55 56	48	Clausen, B., Biggs, B. J. F., 2000. Flow variables for ecological studies in temperate streams: groupings
57	49	based on covariance. J. Hydrol 237, 184–197.
58	75	
59		
60		23

2		
3	1	Comola, F., Schaefli, B., Ronco, P.D., Botter, G., Bavav, M., Rinaldo, A., Lehning, M., 2015, Scale-
4	2	dependent effects of solar radiation patterns on the snow-dominated hydrologic response
5	3	Geophys Res Lett 42 3895–3902 https://doi.org/10.1002/2015GL064075
6	4	Coopersmith, F., Yaeger, M.A., Ye, S., Cheng, L., Sivapalan, M., 2012, Exploring the physical controls
/	5	of regional patterns of flow duration curves & ndash: Part 3: A catchment classification
8	6	system based on regime curve indicators. Hydrol. Earth Syst. Sci. 16, 4467–4482
9 10	7	https://doi.org/10.5104/boss 16.4467.2012
10	0	Coven C. Freer L. Wagener T. Odeni N.A. Clark M. 2014 Diagnostic evaluation of multiple
12	0	Coxon, G., Freer, J., Wagener, T., Ouoni, N.A., Clark, M., 2014. Diagnostic evaluation of multiple
13	9	nypotneses of hydrological behaviour in a limits-of-acceptability framework for 24 OK
14	10	Calchments. Hydrol. Process. 28, 6135–6150. https://doi.org/10.1002/hyp.10096
15	11	Danesh-Yazdi, M., Botter, G., Foutoula-Georgiou, E., 2017. Time-variant Lagrangian transport
16	12	formulation reduces aggregation bias of water and solute mean travel time in
17	13	heterogeneous catchments. Geophys. Res. Lett. 44, 4880–4888.
18	14	Dewson, Z.S., James, A.B., Death, R.G., 2007. A review of the consequences of decreased flow for
19	15	instream habitat and macroinvertebrates. J. North Am. Benthol. Soc. 26, 401–415.
20	16	Doxaran, D., Froidefond, JM., Lavender, S., Castaing, P., 2002. Spectral signature of highly turbid
21	17	waters: Application with SPOT data to quantify suspended particulate matter
22	18	concentrations. Remote Sens. Environ. 81, 149–161.
23	19	Dozier, J., 1989. Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote
24 25	20	Sens. Environ. 28, 9–22.
25	21	Dralle, D.N., Karst, N.J., Charalampous, K., Veenstra, A., Thompson, S.E., 2017. Event-scale power law
20	22	recession analysis: quantifying methodological uncertainty. Hydrol. Earth Syst. Sci. 21, 65.
28	23	Eng, K., Grantham, T.E., Carlisle, D.M., Wolock, D.M., 2017. Predictability and selection of hydrologic
29	24	metrics in riverine ecohydrology. Freshw. Sci. 36, 915–926.
30	25	Euser, T., Winsemius, H.C., Hrachowitz, M., Fenicia, F., Uhlenbrook, S., Savenije, H.H.G., 2013, A
31	26	framework to assess the realism of model structures using hydrological signatures. Hydrol
32	27	Farth Syst Sci 17 1893–1912
33	28	Fang K Shen C 2017 Full-flow-regime storage-streamflow correlation natterns provide insights
34	20	into hydrologic functioning over the continental US Water Resour, Res. 53, 8064–8083
35	20	https://doi.org/10.1002/2016W/P020282
36	21	Earmer, D. Siyapalan, M. Jothityangkoon, C. 2003. Climate soil and vegetation controls upon the
3/	27	variability of water balance in temperate and comiarid landscapes: Dewnward approach to
20	52 22	water balance analysis. Water Posour, Pos. 20
40	22 24	Water Dalalite allalysis. Water Resources 59.
41	34 25	Fenicia, F., Kavetski, D., Reichert, P., Albert, C., 2018. Signature-domain calibration of hydrological
42	35	models using approximate Bayesian computation: Empirical analysis of fundamental
43	36	properties. Water Resour. Res. 54, 3958–3987.
44	37	Fenicia, F., Kavetski, D., Savenije, H.H., 2011. Elements of a flexible approach for conceptual
45	38	hydrological modeling: 1. Motivation and theoretical development. Water Resour. Res. 47.
46	39	Fenicia, F., Kavetski, D., Savenije, H.H.G., Pfister, L., 2016. From spatially variable streamflow to
47	40	distributed hydrological models: Analysis of key modeling decisions. Water Resour. Res. 52,
48	41	954–989. https://doi.org/10.1002/2015WR017398
49	42	Gnann, S., Howden, N., Woods, R., McMillan, H., 2020a. Linking hydrological signatures to
50	43	hydrological processes and catchment attributes: a flexible approach applied to baseflow
51	44	signatures. European Geophysical Union. https://doi.org/10.5194/egusphere-egu2020-3569
52 53	45	Gnann, S.J., Howden, N.J.K., Woods, R.A., 2020b. Hydrological signatures describing the translation
55	46	of climate seasonality into streamflow seasonality. Hydrol. Earth Syst. Sci. 24, 561–580.
55	47	https://doi.org/10.5194/hess-24-561-2020
56	48	Gordon, N.D. (Ed.), 2004. Stream hydrology: an introduction for ecologists, 2nd ed. ed. Wiley,
57	49	Chichester, West Sussex, England ; Hoboken, N.J.
58		
59		
60		24

1		
2		
3 1	1	Gudmundsson, L., Do, H., Leonard, M., Westra, S., 2018. The Global Streamflow Indices and
4 5	2	Metadata Archive (GSIM)-Part 2: Quality control, time-series indices and homogeneity
6	3	assessment. Earth Syst Sci Data 10, 787–804.
7	4	Gunkel, A., Shadeed, S., Hartmann, A., Wagener, T., Lange, J., 2015. Model signatures and aridity
8	5	indices enhance the accuracy of water balance estimations in a data-scarce Eastern
9	6	Mediterranean catchment. J. Hydrol. Reg. Stud. 4, 487–501.
10	7	Gupta, H.V., Sorooshian, S., Yapo, P.O., 1998. Toward improved calibration of hydrologic models:
11	8	Multiple and noncommensurable measures of information. Water Resour. Res. 34, 751–763.
12	9	Gupta, H.V., Wagener, T., Liu, Y., 2008. Reconciling theory with observations: elements of a
13	10	diagnostic approach to model evaluation. Hydrol. Process. Int. J. 22, 3802–3813.
14	11	Guse, B., Pfannerstill, M., Gafurov, A., Kiesel, J., Lehr, C., Fohrer, N., 2017. Identifying the connective
15 16	12	strength between model parameters and performance criteria. Hydrol. Earth Syst. Sci. 21,
17	13	5663–5679.
18	14	Harman, C.J., Sivapalan, M., Kumar, P., 2009. Power law catchment-scale recessions arising from
19	15	heterogeneous linear small-scale dynamics. Water Resour. Res. 45.
20	16	Hart, D.D., Finelli, C.M., 1999. Physical-biological coupling in streams: the pervasive effects of flow
21	17	on benthic organisms. Annu. Rev. Ecol. Syst. 30, 363–395.
22	18	Hartmann, A., Wagener, T., Rimmer, A., Lange, J., Brielmann, H., Weiler, M., 2013, Testing the
23	19	realism of model structures to identify karst system processes using water quality and
24	20	quantity signatures. Water Resour. Res. 49, 3345–3358.
25	21	Hartmann, Andreas, Weiler, M., Wagener, T., Lange, J., Kralik, M., Humer, F., Mizved, N., Rimmer, A.,
20	22	Barberá, LA, Andreo, B., 2013, Process-based karst modelling to relate hydrodynamic and
27 28	23	hydrochemical characteristics to system properties. Hydrol. Farth Syst. Sci. 17, 3305–3321
20	20	Hav LE Leavesley G.H. Clark M.P. Markstrom S.L. Viger B.L. Limemoto M. 2006 Sten Wise
30	25	Multiple Objective Calibration of a Hydrologic Model for a Snowmelt Dominated Basin1
31	25	IAWRA I Am Water Resour Assoc 42 877–890 https://doi.org/10.1111/i.1752-
32	20	1688 2006 th04501 v
33	27	Havboe K Wake C P. Huntington T.G. Luo L. Schwartz M.D. Sheffield L. Wood F. Anderson
34	20	R Bradhury L DeGaetano A 2007 Past and future changes in climate and hydrological
35	20	indicators in the US Northeast Clim. Dyn. 28, 281–407
36	20 21	He 7 Veregushyn S. Unger Shavesteh K. Gafurov A. Kalashnikova O. Omerova E. Merz P.
3/	21	He, Z., Vologushyn, S., Onger-Shayesten, K., Galulov, A., Kalashinkova, O., Omorova, E., Merz, B.,
30	52 22	designized basing Water Becour, Bec E4, 2226, 2261
40	22	gidcienzed basins. Water Resour. Res. 34, 2530-2501.
41	54 25	Reduciter, B., Radi, E., Stalli, K., Balther, R., 2019. Index-based characterization and quantification of
42	35	groundwaler dynamics. Waler Resour. Res. 55, 5575–5592.
43	30	Hingray, B., Schaem, B., Mezgham, A., Hamur, Y., 2010. Signature-Dased model calibration for
44	37	nydrological prediction in mesoscale Alpine catchments. Hydrol. Sci. Journal–Journal Sci.
45	38	Tyurol. 55, 1002–1016.
46	39	Hogue, T.S., Soroosnian, S., Gupta, H., Hoiz, A., Braatz, D., 2000. A multistep automatic calibration
4/	40	scheme for river forecasting models. J. Hydrometeorol. 1, 524–542.
48 40	41	Horner, I. 2020. Design and evaluation of hydrological signatures for the diagnosis and improvement
49 50	42	of a process-based distributed hydrological model. PhD thesis, University of Grenoble Alpes,
51	43	France. 306p
52	44	Horner, I., Branger, F., Micivillian, H.K., Vannier, O., Braud, I., 2020. Information content of snow
53	45	nydrological signatures based on streamflow, precipitation and air temperature. Hydrol.
54	46	Process. 34: 2/63–2//9.
55	47	Hrachowitz, M., Fovet, O., Ruiz, L., Euser, T., Gharari, S., Nijzink, R., Freer, J., Savenije, H.H.G.,
56	48	Gascuel-Odoux, C., 2014. Process consistency in models: The importance of system
57	49	signatures, expert knowledge, and process complexity. Water Resour. Res. 50, 7445–7469.
58 50		
59 60		
00		25

3	1	Hrachowitz, M., Savenije, H.H.G., Blöschl, G., McDonnell, J.J., Sivapalan, M., Pomeroy, J.W.,
4	2	Arheimer, B., Blume, T., Clark, M.P., Ehret, U., 2013. A decade of Predictions in Ungauged
5	3	Basins (PUB)—a review. Hydrol. Sci. J. 58, 1198–1255.
0 7	4	Hrachowitz, M., Soulsby, C., Tetzlaff, D., Speed, M., 2010. Catchment transit times and landscape
/ 8	5	controls—does scale matter? Hydrol. Process. Int. J. 24, 117–125.
9	6	Huh, S., Dickey, D.A., Meador, M.R., Ruhl, K.E., 2005. Temporal analysis of the frequency and
10	7	duration of low and high streamflow: years of record needed to characterize streamflow
11	8	variability. J. Hydrol. 310, 78–94.
12	9	Hynek, B.M., Beach, M., Hoke, M.R.T., 2010. Updated global map of Martian valley networks and
13	10	implications for climate and hydrologic processes. J. Geophys. Res. Planets 115.
14	11	https://doi.org/10.1029/2009JE003548
15	12	Jain, A.K., Murty, M.N., Flynn, P.J., 1999. Data clustering: a review. ACM Comput. Surv. CSUR 31.
10 17	13	264–323.
12	14	Javathilake, D.I., Smith, T., 2019, Predicting the temporal transferability of model parameters
19	15	through a hydrological signature analysis. Front. Earth Sci. 1–14.
20	16	Jehn, F.U., Bestian, K., Breuer, L., Kraft, P., Houska, T., 2020, Using hydrological and climatic
21	17	catchment clusters to explore drivers of catchment behavior. Hydrol, Farth Syst. Sci. 24.
22	18	1081–1100. https://doi.org/10.5194/hess-24-1081-2020
23	19	Inthityangkoon, C., Siyanalan, M., Farmer, D.L., 2001, Process controls of water balance variability in
24	20	a large semi-arid catchment: downward approach to hydrological model development. I
25	21	Hydrol, 254, 174–198.
20	22	lowett LG Duncan M L 1990 Flow variability in New Zealand rivers and its relationship to in-
27	22	stream habitat and biota N 7 L Mar Freshw Res 24 305–317
20	20	luston L Jansson P - F. Gustafsson D. 2014 Rating curve uncertainty and change detection in
30	25	discharge time series: case study with 14-year historic data from the Nyangores River
31	26	Kenva Hydrol Process 28 2509–2523
32	20	luston I.M. Kauffeldt A. Ouesada Montano B. Seihert I. Beven K.I. Westerberg I.K. 2012
33	28	Smiling in the rain: Seven reasons to be positive about uncertainty in hydrological modelling
34	29	Kanangaziwiri F Hughes D A Wagener T 2012 Incorporating uncertainty in hydrological
35	30	nredictions for gauged and ungauged basins in southern Africa Hydrol Sci 1 57 1000–1019
30 27	31	Kauffeldt & Halldin S. Rodhe & Xu C-Y. Westerberg LK 2013 Disinformative data in large-
32	32	scale hydrological modelling. Hydrol. Earth Syst. Sci. 17, 2845–2857
39	32	Kavetski D. Fenicia E. 2011 Elements of a flexible approach for concentual hydrological modeling.
40	34	2 Application and experimental insights Water Resour Res 47
41	35	https://doi.org/10.1029/2011WR010748
42	36	Kavetski D. Fenicia F. Reichert P. Albert C. 2018 Signature-domain calibration of hydrological
43	37	models using approximate Bayesian computation: Theory and comparison to existing
44	38	applications Water Resour, Res. 54, 4059–4083
45 46	39	Kelleher C McGlynn B Wagener T 2017 Characterizing and reducing equifinality by constraining
40 47	40	a distributed catchment model with regional signatures local observations, and process
48	41	understanding Hydrol Farth Syst Sci 21 3325
49	42	Kennard M I. Mackay S I. Pusey B I. Olden I D. Marsh N. 2010a Quantifying uncertainty in
50	42	estimation of hydrologic metrics for ecohydrological studies River Res Appl 26 137–156
51	43 ΔΔ	Kennard M L Pusev B L Olden LD Mackay S L Stein LL Marsh N 2010h Classification of
52	45	natural flow regimes in Australia to support environmental flow management. Freshw, Biol
53	46	$55 \ 171-193 \ \text{https://doi.org/10.1111/i.1365-2427.2009.02307.x}$
54	40	Kiang LE Gazoorian C McMillan H Coxon G Le Coz L Westerberg LK Belleville A Sevrez
22 56	<u>4</u> 8	D Sikorska A F Petersen-Øverleir A 2018 A comparison of methods for streamflow
50	<u>40</u>	uncertainty estimation Water Resour Res 5/ 71/9–7176
58	τJ	
59		
60		26

1		
2		
4	1	Kirchner, J.W., 2016. Aggregation in environmental systems-Part 1: Seasonal tracer cycles quantity
5	2	young water fractions, but not mean transit times, in spatially heterogeneous catchments.
6	3	Hydrol. Earth Syst. Sci. 20, 279–297.
7	4	Klaus, J., McDonnell, J.J., 2013. Hydrograph separation using stable isotopes: Review and evaluation.
8	5	J. Hydrol. 505, 47–64. https://doi.org/10.1016/j.jhydrol.2013.09.006
9	6	Klemes, V., 1983. Conceptualization and scale in hydrology. J. Hydrol. 65, 1–23.
10	/	Knoben, W.J., Woods, R.A., Freer, J.E., 2018. A quantitative hydrological climate classification
11	8	evaluated with independent streamflow data. Water Resour. Res. 54, 5088–5109.
12	9	Konrad, C.P., Brasher, A.M.D., May, J.T., 2008. Assessing streamflow characteristics as limiting
14	10	factors on benthic invertebrate assemblages in streams across the western United States.
15	11	Freshw. Biol. 53, 1983–1998.
16	12	Kunkle, G.R., 1962. The baseflow-duration curve, A technique for the study of groundwater
17	13	discharge from a drainage basin. J. Geophys. Res. 1896-1977 67, 1543–1554.
18	14	https://doi.org/10.1029/JZ067i004p01543
19	15	Lane, B.A., Sandoval-Solis, S., Stein, E.D., Yarnell, S.M., Pasternack, G.B., Dahlke, H.E., 2018. Beyond
20	16	metrics? The role of hydrologic baseline archetypes in environmental water management.
21	17	Environ. Manage. 62, 678–693.
22	18	Lane, R.A., Coxon, G., Freer, J.E., Wagener, T., Johnes, P.J., Bloomfield, J.P., Greene, S., Macleod, C.J.,
24	19	Reaney, S.M., 2019. Benchmarking the predictive capability of hydrological models for river
25	20	flow and flood peak predictions across over 1000 catchments in Great Britain. Hydrol. Earth
26	21	Syst. Sci. 23, 4011–4032.
27	22	Lundquist, J.D., Cayan, D.R., 2002. Seasonal and spatial patterns in diurnal cycles in streamflow in the
28	23	western United States. J. Hydrometeorol. 3, 591–603.
29	24	Mackay, J.D., Barrand, N.E., Hannah, D.M., Krause, S., Jackson, C.R., Everest, J., Aðalgeirsdóttir, G.,
30 21	25	2018. Glacio-hydrological melt and run-off modelling: application of a limits of acceptability
37	26	framework for model comparison and selection. The Cryosphere 12, 2175–2210.
33	27	https://doi.org/10.5194/tc-12-2175-2018
34	28	Mahe, G., Lienou, G., Descroix, L., Bamba, F., Paturel, J.E., Laraque, A., Meddi, M., Habaieb, H.,
35	29	Adeaga, O., Dieulin, C., Kotti, F.C., Khomsi, K., 2013. The rivers of Africa: witness of climate
36	30	change and human impact on the environment. Hydrol. Process. 27, 2105–2114.
37	31	https://doi.org/10.1002/hyp.9813
38	32	Maina, F.Z., Siirila-Woodburn, E.R., Vahmani, P., 2019. On the sensitivity of meteorological forcing
39	33	resolution on hydrologic metrics. Hydrol. Earth Syst. Sci. Discuss. 1–53.
40 41	34	https://doi.org/10.5194/hess-2019-509
42	35	Martinez, G.F., Gupta, H.V., 2011. Hydrologic consistency as a basis for assessing complexity of
43	36	monthly water balance models for the continental United States. Water Resour. Res. 47.
44	37	McDonnell, J.J., Sivapalan, M., Vaché, K., Dunn, S., Grant, G., Haggerty, R., Hinz, C., Hooper, R.,
45	38	Kirchner, J., Roderick, M.L., 2007. Moving beyond heterogeneity and process complexity: A
46	39	new vision for watershed hydrology. Water Resour. Res. 43.
47	40	McMahon, T.A., Vogel, R.M., Peel, M.C., Pegram, G.G., 2007. Global streamflows–Part 1:
48	41	Characteristics of annual streamflows. J. Hydrol. 347, 243–259.
49 50	42	McMillan, H., 2020. Linking hydrologic signatures to hydrologic processes: A Review. Hydrol. Process.
51	43	McMillan, H., Gueguen, M., Grimon, E., Woods, R., Clark, M., Rupp, D.E., 2014. Spatial variability of
52	44	hydrological processes and model structure diagnostics in a 50 km2 catchment. Hydrol.
53	45	Process. 28, 4896–4913.
54	46	McMillan, H., Seibert, J., Petersen-Overleir, A., Lang, M., White, P., Snelder, T., Rutherford, K.,
55	47	Krueger, T., Mason, R., Kiang, J., 2017. How uncertainty analysis of streamflow data can
56	48	reduce costs and promote robust decisions in water management applications. Water
57	49	Resour. Res. 53, 5220–5228.
58 50		
59 60		
00		2/

3	1	McMillan, H., Westerberg, I., Branger, F., 2016. Five guidelines for selecting hydrological signatures.
4	2	Hydrol. Process. 31, 4757–4761.
5	3	McMillan, H.K., 2012. Effect of spatial variability and seasonality in soil moisture on drainage
6 7	4	thresholds and fluxes in a conceptual hydrological model. Hydrol. Process. 26. 2838–2844.
/	5	McMillan, H.K., Booker, D.J., Cattoën, C., 2016, Validation of a national hydrological model, J. Hydrol.
0 0	6	541_800–815
10	7	McMillan H.K. Clark M.P. Bowden W.B. Duncan M. Woods B.A. 2011 Hydrological field data
11	, 8	from a modeller's perspective: Part 1 Diagnostic tests for model structure Hydrol Process
12	0	
13	10	McMillan HK Sriniyasan MS 2015 Characteristics and controls of variability in soil moisture and
14	10	groundwater in a beadwater catchment Hydrol Earth Syst Sci 10 1767–1786
15	12	McMillan H.K. Wosterberg J.K. Krueger T. 2018 Hydrological data upcortainty and its
16	12	implications Wiley Interdiscip, Pay, Water 5, o1210
17	13	Mondoza D.A. Mizukami N. Ikoda K. Clark M.D. Cutmann E.D. Arnold I.B. Brokko I.D.
18	14 15	Nienuoza, P.A., Mizukanii, N., Ikeua, K., Clark, M.P., Gutinanii, E.D., Annou, J.R., Diekke, L.D.,
19 20	15	Rajagopalan, B., 2010. Effects of different regional climate model resolution and forcing
20 21	10	scales on projected hydrologic changes. J. Hydrol. 541, 1003–1019.
27	1/	nttps://doi.org/10.1016/j.jnydroi.2016.08.010
23	18	Merz, R., Bloschi, G., 2009. A regional analysis of event runoff coefficients with respect to climate
24	19	and catchment characteristics in Austria. Water Resour. Res. 45.
25	20	Millot, C., 1999. Circulation in the western Mediterranean Sea. J. Mar. Syst. 20, 423–442.
26	21	Mitsch, W.J., Gosselink, J.G., 1986. Wetlands. Van Nostrand Reinhold Company Inc, New York, NY,
27	22	USA.
28	23	Mizukami, N., Rakovec, O., Newman, A.J., Clark, M.P., Wood, A.W., Gupta, H.V., Kumar, R., 2019. On
29	24	the choice of calibration metrics for "high-flow" estimation using hydrologic models.
30	25	Montanari, A., Toth, E., 2007. Calibration of hydrological models in the spectral domain: An
31 22	26	opportunity for scarcely gauged basins? Water Resour. Res. 43.
22 22	27	Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I—A discussion
34	28	of principles. J. Hydrol. 10, 282–290.
35	29	Ndzabandzaba, C., Hughes, D.A., 2017. Regional water resources assessments using an uncertain
36	30	modelling approach: The example of Swaziland. J. Hydrol. Reg. Stud. 10, 47–60.
37	31	https://doi.org/10.1016/j.ejrh.2017.01.002
38	32	Olden, J.D., Poff, N.L., 2003. Redundancy and the choice of hydrologic indices for characterizing
39	33	streamflow regimes. River Res. Appl. 19, 101–121.
40	34	Oppel, H., Schumann, A.H., 2020. Machine learning based identification of dominant controls on
41	35	runoff dynamics. Hydrol. Process. https://doi.org/10.1002/hyp.13740
42	36	Oudin, L., Andréassian, V., Perrin, C., Michel, C., Le Moine, N., 2008. Spatial proximity, physical
43 11	37	similarity, regression and ungaged catchments: A comparison of regionalization approaches
44	38	based on 913 French catchments. Water Resour. Res. 44.
46	39	Parde, M., 1933. Fleuves et Rivieres. Armand Colin n°155.
47	40	Patterson, N.K., Lane, B.A., Sandoval-Solis, S., Pasternack, G.B., Yarnell, S.M., Qiu, Y., 2020. A
48	41	hydrologic feature detection algorithm to quantify seasonal components of flow regimes. J.
49	42	Hydrol. 124787.
50	43	Pechlivanidis, I.G., Jackson, B., McMillan, H., Gupta, H., 2014. Use of an entropy-based metric in
51	44	multiobjective calibration to improve model performance. Water Resour. Res. 50, 8066–
52	45	8083.
53	46	Pfannerstill, M., Guse, B., Fohrer, N., 2014, Smart low flow signature metrics for an improved overall
54 55	47	performance evaluation of hydrological models. J. Hydrol. 510, 447–458.
56	48	https://doi.org/10.1016/i.ibvdrol.2013.12.044
57	.0	
58		
59		
60		28

1 2		
3	1	Poff N 1006 A hydrogoography of uprogulated streams in the United States and an examination of
4	1 2	scale-dependence in some hydrological descriptors. Freshw. Biol. 36, 71–79
5	2	$\frac{1}{1000}$ https://doi.org/10.1046/i.1365_2/27.1996.00073 v
6	 ∕	Poff NI Allan ID Bain MB Karr IB Prestegaard KI Richter BD Sparks RE Stromberg
7	-+ 5	1 C 1007 The natural flow regime BioScience 17 760-781
8	5	Doff NIL Richter B.D. Arthington A.H. Bunn S.F. Naiman B.I. Kendy F. Acreman M. Anse C
9 10	7	Riedsoe B.P. Freeman M.C. 2010 The ecological limits of hydrologic alteration (FLOHA): a
11	, 8	new framework for developing regional environmental flow standards. Freshw. Biol. 55
12	9	147–170
13	10	Poff. N.L., Ward, J.V., 1989. Implications of streamflow variability and predictability for lotic
14	11	community structure: a regional analysis of streamflow patterns. Can. J. Fish. Aquat. Sci. 46
15	12	
16	13	Poff N I Zimmerman I K 2010 Ecological responses to altered flow regimes: a literature review
17 18	14	to inform the science and management of environmental flows. Freshw. Biol. 55, 194–205
10	15	Pokhrel P. Vilmaz K.K. Gunta H.V. 2012 Multiple-criteria calibration of a distributed watershed
20	16	model using spatial regularization and response signatures. I. Hydrol. 418, 49–60
21	17	Prieto, C., Vine, N.L., Kavetski, D., García, F., Medina, R., 2019, Flow Prediction in Ungauged
22	18	Catchments Using Probabilistic Random Forests Regionalization and New Statistical
23	19	Adequacy Tests, Water Resour, Res. 55, 4364–4392
24	20	https://doi.org/10.1029/2018WR023254
25	21	Refsgaard, J.C., Knudsen, J., 1996. Operational validation and intercomparison of different types of
20 27	22	hydrological models. Water Resour. Res. 32, 2189–2202.
27	23	Renard, B., Kavetski, D., Kuczera, G., Thyer, M., Franks, S.W., 2010, Understanding predictive
29	24	uncertainty in hydrologic modeling: The challenge of identifying input and structural errors.
30	25	Water Resour, Res. 46. https://doi.org/10.1029/2009WR008328
31	26	Richter, B.D., Baumgartner, J.V., Powell, J., Braun, D.P., 1996. A method for assessing hydrologic
32	27	alteration within ecosystems. Conserv. Biol. 10. 1163–1174.
33	28	Sahraei, S., Asadzadeh, M., Unduche, F., 2020, Signature-Based Multi-Modelling and Multi-Objective
34	29	Calibration of Hydrologic Models: Application in Flood Forecasting for Canadian Prairies. J.
35 36	30	Hvdrol. 125095.
37	31	Sawicz, K., Wagener, T., Sivapalan, M., Troch, P.A., Carrillo, G., 2011, Catchment classification:
38	32	empirical analysis of hydrologic similarity based on catchment function in the eastern USA.
39	33	Hydrol. Earth Syst. Sci. 15, 2895–2911.
40	34	Sawicz, K.A., Kelleher, C., Wagener, T., Troch, P., Sivapalan, M., Carrillo, G., 2014. Characterizing
41	35	hydrologic change through catchment classification. Hydrol. Earth Syst. Sci. 18, 273.
42	36	Schaefli, B., 2016. Snow hydrology signatures for model identification within a limits-of-acceptability
43	37	approach. Hydrol. Process. 30, 4019–4035.
44 15	38	Searcy, J.K., 1959. Flow-duration curves. US Government Printing Office.
46	39	Shafii, M., Basu, N., Craig, J.R., Schiff, S.L., Cappellen, P.V., 2017. A diagnostic approach to
47	40	constraining flow partitioning in hydrologic models using a multiobjective optimization
48	41	framework. Water Resour. Res. 53, 3279–3301. https://doi.org/10.1002/2016WR019736
49	42	Shafii, M., Tolson, B.A., 2015. Optimizing hydrological consistency by incorporating hydrological
50	43	signatures into model calibration objectives. Water Resour. Res. 51, 3796–3814.
51	44	Shamir, E., Imam, B., Gupta, H.V., Sorooshian, S., 2005a. Application of temporal streamflow
52	45	descriptors in hydrologic model parameter estimation. Water Resour. Res. 41.
53 54	46	https://doi.org/10.1029/2004WR003409
55	47	Shamir, E., Imam, B., Morin, E., Gupta, H.V., Sorooshian, S., 2005b. The role of hydrograph indices in
56	48	parameter estimation of rainfall–runoff models. Hydrol. Process. Int. J. 19, 2187–2207.
57		
58		
59		
60		29

3	1	Sivapalan, M., Yaeger, M.A., Harman, C.J., Xu, X., Troch, P.A., 2011. Functional model of water
4	2	balance variability at the catchment scale: 1. Evidence of hydrologic similarity and space-
5	3	time symmetry. Water Resour. Res. 47.
6 7	4	Sprenger, M., Stumpp, C., Weiler, M., Aeschbach, W., Allen, S.T., Benettin, P., Dubbert, M.,
/ 8	5	Hartmann, A., Hrachowitz, M., Kirchner, J.W., McDonnell, J.J., Orlowski, N., Penna, D., Pfahl,
9	6	S., Rinderer, M., Rodriguez, N., Schmidt, M., Werner, C., 2019. The Demographics of Water:
10	7	A Review of Water Ages in the Critical Zone, Rev. Geophys. 57, 800–834.
11	8	https://doi.org/10.1029/2018RG000633
12	9	Sugawara, M., 1979, Automatic calibration of the tank model / L'étalonnage automatique d'un
13	10	modèle à cisterne. Hydrol. Sci. Bull. 24. 375–388.
14	11	https://doi.org/10.1080/02626667909491876
15	12	Tharme, R.F., 2003, A global perspective on environmental flow assessment: emerging trends in the
16	13	development and application of environmental flow methodologies for rivers. River Res
17 10	14	April 19 397–441
10	15	Visessri S McIntyre N 2016 Regionalisation of hydrological responses under land-use change and
20	16	variable data quality. Hydrol. Sci. J. 61, 302–320
21	17	https://doi.org/10.1080/02626667.2015.1006226
22	18	Vogel R M Fennessey N M 1991 Flow-duration curves I: New interpretation and confidence
23	10	intervals Water Resour Plan Manag 120 /85–50/
24	20	Wagener, T. Montanari, A. 2011 Convergence of approaches toward reducing uncertainty in
25	20	nredictions in ungauged basins Water Resour Res 47
26	21	https://doi.org/10.1029/2010WR009469
2/ ว0	22	Wagener T. Siyanalan M. Troch P. Woods R. 2007 Catchment classification and hydrologic
20 20	23	similarity Googr Compass 1, 001–021
30	24	Westerberg LK Di Baldassarra G. Boyan KL Covan G. Krueger T. 2017 Percentual models of
31	25	uncertainty for socia hydrological systems: A flood risk shange example. Hydrol. Sci. 1. 62
32	20	
33	27	Westerberg LK Guerrero L. L. Vounger D.M. Boyen K. L. Seibert L. Halldin S. Freer LE, Yu C.V.
34	20	2011 Calibration of hydrological models using flow-duration curves. Hydrol. Earth Syst. Sci
35	20	
36 27	30	Westerberg LK McMillan HK 2015 Uncertainty in hydrological signatures Hydrol Earth Syst Sci
37 38	32	
39	22	Westerberg LK Sikorska-Senoner A E Viviroli D Vis M Seibert L 2020 Hydrological model
40	37	calibration with uncertain discharge data. Hydrol. Sci. L
41	25	Westerberg LK Wagener T. Covon G. McMillan HK. Castellarin A. Montanari A. Freer L
42	36	2016 Uncertainty in hydrological signatures for gauged and ungauged catchments. Water
43	30	Recour Res 52 18/7–1865
44	38	Winsemius HC Schaefli B Montanari A Savenije HHG 2009 On the calibration of
45	30	hydrological models in ungauged basins: A framework for integrating bard and soft
46	10	hydrological information. Water Pesour, Pes 45
47 48	40	Wondzell S.M. Gooseff M.N. McGlypp, R.L. 2007 Flow velocity and the hydrologic hebavior of
49	41	strooms during baseflow. Goophys. Pos. Lett. 24
50	42	Screams during basenow. Geophys. Res. Lett. 54.
51	45	Aue, D., Botte, J., De Baets, B., Accoe, F., Nestier, A., Taylor, F., Van Cleeniput, O., Bergiunu, M., Boocky, B., 2000, Brosont limitations and future prespects of stable isotope methods for
52	44	pitrate course identification in surface and groundwater. Water Res. 42, 1150–1170
53	45	Vaday M. Wagapar T. Gupta H. 2007 Regionalization of constraints on expected watershed
54	40	racinonics behavior for improved predictions in ungauged basing. Adv. Water Posour, 20
55	47 10	1756_1771
50 57	40	1/30-1//4.
58		
59		
60		30
		50

1		
2	1	Vene V. Den M. Deek H.F. Fisher C.K. Deishley, D.F. Kee, C.C. Hene V. Wood, F.F. 2010. In
4	1 2	Yang, Y., Pan, M., Beck, H.E., Fisher, C.K., Beigniey, R.E., Kao, SC., Hong, Y., Wood, E.F., 2019. In
5	2	calibration against streamflow characteristics. Water Resour, Res. 55, 7784–7803
6	4	Yilmaz, K.K., Gupta, H.V., Wagener, T., 2008. A process-based diagnostic approach to model
7 8	5	evaluation: Application to the NWS distributed hydrologic model. Water Resour. Res. 44.
9	6	Zhang, Y., Chiew, F.H., Li, M., Post, D., 2018. Predicting runoff signatures using regression and
10	7	hydrological modeling approaches. Water Resour. Res. 54, 7859–7878.
11	8	Zhang, Y., Vaze, J., Chiew, F.H.S., Teng, J., Li, M., 2014. Predicting hydrological signatures in
12	9	ungauged catchments using spatial interpolation, index model, and rainfall-runoff
13	10	modelling. J. Hydrol. 517, 936–948. https://doi.org/10.1016/j.jhydrol.2014.06.032
15	11	Zhang, Z., Wagener, T., Reed, P., Bhushan, R., 2008. Reducing uncertainty in predictions in ungauged
16	12	basins by combining hydrologic indices regionalization and multiobjective optimization.
17	17	Water Resources. 44.
18 19	14	
20		
21		
22		
23 24		
25		
26		
27 29		
20 29		
30		
31		
32 33		
34		
35		
36		
37 38		
39		
40		
41 42		
42 43		
44		
45		
46 47		
48		
49		
50		
51 52		
53		
54		
55		
50 57		
58		
59		
60		31

Hydrologic signatures are metrics that we use to describe the complex dynamics of river flow

269x134mm (96 x 96 DPI)