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4 Abstract

5 Hydrologic signatures are quantitative metrics or indices that describe statistical or dynamical 
6 properties of hydrologic data series, primarily streamflow. Hydrologic signatures were first used in 
7 eco-hydrology to assess alterations in flow regime, and have since seen wide uptake across a variety 
8 of hydrological fields. Their applications include extracting biologically relevant attributes of 
9 streamflow data, monitoring hydrologic change, analysing runoff generation processes, defining 

10 similarity between watersheds, and calibrating and evaluating hydrologic models. Hydrologic 
11 signatures allow us to extract meaningful information about watershed processes from streamflow 
12 series, and are therefore seeing increasing use in emerging information-rich areas such as global-
13 scale hydrologic modelling, machine learning and large-sample hydrology. This overview paper 
14 describes the background and development of hydrologic signature theory, reviews hydrologic 
15 signature use across a variety of applications, and discusses ongoing hydrologic signature research 
16 including current challenges.
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1

2 Caption: Hydrologic signatures are metrics that we use to describe the complex dynamics of river 
3 flow

4 1 INTRODUCTION

5 1.1 Discovering the information in streamflow data

6 Streamflow timeseries show patterns: flood peaks and low flow periods, daily changes and seasonal 
7 cycles. These patterns are examples of information in streamflow data. The information might 
8 describe how the stream reacts to changes in weather, or what magnitudes and rates of change of 
9 flow are usual for the stream. Streamflow patterns depend on the physical characteristics of the 

10 watershed, telling a story about the path of water from precipitation to streamflow. Flow patterns in 
11 turn affect the stream’s environment, informing us about riparian conditions and habitats. This 
12 paper describes how hydrologists use hydrologic signatures to extract this wealth of information 
13 from streamflow.

14 1.2 What is a hydrologic signature?

15 Hydrologic signatures are quantitative metrics that describe statistical or dynamic properties of 
16 streamflow. They are also known as hydrologic metrics, hydrologic indices, or diagnostic signatures. 
17 Hydrological signatures range from simple statistics such as the mean and quantiles of the 
18 timeseries, to complex metrics such as descriptors of recession shapes that are related to the 
19 storage-discharge behaviour of the watershed (Figure 1). Hundreds of different hydrologic 
20 signatures have been proposed, for example a review of signature choice and redundancy 
21 considered 171 signatures (Olden and Poff, 2003). To organise and describe signatures, several 
22 categorisations have been proposed. 

23 An early and well-known categorisation groups signatures into five ecologically-important features 
24 of flow regimes: magnitude, timing, frequency, duration and rate of change (Richter et al., 1996) 
25 (Table 2). This work built on a previous suggestion to group signatures by flow variability, pattern of 
26 the flood regime and extent of intermittent conditions (Poff and Ward, 1989). Many subsequent 
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1 authors use the five categories. Notably, Poff et al. (1997) use the categories to quantify the natural 
2 flow regime of a river, proposing that these components completely describe the flow characteristics 
3 of importance to the aquatic ecosystem. Based on the categories, Richter et al. (1996) went on to 
4 propose five statistical signature types for describing hydrologic alteration caused by human 
5 influence. Those categories were: flow magnitude, magnitude and duration of annual maxima, 
6 timing of annual maxima, frequency and duration of high and low flow pulses, and rate and 
7 frequency of streamflow change.

Type Signature Examples Ecological Relevance
1. Magnitude Flow magnitude by year or 

month
Describes wetted area and availability of 
habitat

2. Timing Seasonal timing of annual 
maxima and other annual flow 
events

Describes whether life-cycle requirements 
of instream species are met

3. Frequency Frequency of events such as 
floods or droughts

Influences population dynamics by 
controlling reproduction or mortality events 
for instream species

4. Duration Length of time for which a 
specific flow condition occurs

Controls life cycle phases; controls 
accumulated impact of floods or droughts 

5. Rate of Change Rate of change of flow 
magnitude and stage height

Can strand organisms above the water’s 
edge, and strand plant roots above the 
reach of groundwater

8 Table 1. Categorisation of signatures described by Richter et al. (1996)

9 Signatures may purely describe the streamflow timeseries (e.g. mean and quantiles of timeseries) or 
10 may describe a watershed process (e.g. recession shapes related to storage-discharge behaviour).  
11 McMillan (2020) proposed an alternative categorisation that differentiates between statistics- and 
12 dynamics-based signatures, and between signatures at different timescales (Table 2).

Type Description Examples
1. Timeseries Visuals Visual interpretations of 

timeseries data
Double peaks in streamflow, 
diurnal cycles

2: Quantified Event Dynamics Numerical descriptors of 
event-scale dynamics

Recession shapes, flow 
generation thresholds

3: Quantified Seasonal 
Dynamics

Numerical descriptors of 
dynamics, averaged over time

Rising limb density, baseflow 
index

4: Seasonal Statistics Statistical descriptors of the 
flow distribution

Runoff ratio, shape of the flow 
duration curve

5: Mini-model Quantities derived from highly 
simplified models

Storage volumes, regression 
relationships

13 Table 2. Categories of signatures suggested by McMillan (2020)

14 The example signatures in Table 2 show that hydrologic signatures often build on earlier ideas. For 
15 example, early descriptions were published for the flow duration curve (the cumulative distribution 
16 function of flow that shows the percent of time that flow values are exceeded; Searcy, 1959), 
17 baseflow index (proportion of flow that is baseflow; Kunkle, 1962), and Pardé coefficients for flow 
18 variability (ratios of monthly mean discharges to the mean annual discharge; Pardé, 1933). However, 
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1 the concept of combining these metrics into a complete description of the flow regime did not occur 
2 until later.

3

4 Figure 1: Examples of commonly-used hydrologic signatures calculated as metrics of the streamflow 
5 timeseries

6 1.3 Hydrologic signatures in other fields

7 Hydrologic signatures originate in the idea that visible hydrologic patterns can tell us about the 
8 underlying system. We can use accessible measurements to reveal inaccessible or complex 
9 processes: for example, using streamflow to learn about subsurface or overland flow. Other 

10 environmental fields use signatures similarly, such as using water level fluctuations in a wetland to 
11 learn about hidden inflows and outflows (Mitsch and Gosselink, 1986), or using ocean surface 
12 patterns to learn about deep currents (Millot, 1999). In tracer studies, isotope ratios in a water 
13 sample are called signatures, as they help identify the source of the water in time or space (Klaus 
14 and McDonnell, 2013; Sprenger et al., 2019; Xue et al., 2009). In remote sensing, reflectance ratios 
15 between wavelengths are called spectral signatures, as they can identify surface properties such as 
16 snow cover (Dozier, 1989) or water quality (Doxaran et al., 2002). In geomorphology, signatures of 
17 drainage density are even used on Mars to interpret the ancient hydrological cycle (Hynek et al., 
18 2010). In all these examples, signatures allow scientists to interpret measurements and extract 
19 information about the environment.

20 This review focuses on signatures describing streamflow data. However, signatures are applied to 
21 other hydrologic data types. Signatures combining flow and temperature data provide information 
22 on alpine snowfall and melt (Horner et al., 2020; Schaefli, 2016). Signatures were used to categorize 
23 groundwater dynamics (Heudorfer et al., 2019), and to identify soil moisture dynamics that are less 
24 affected by soil heterogeneity (Branger & McMillan, 2019). Recent innovations include signatures 
25 created for karst hydrology (Hartmann et al., 2013), glacio-hydrology (He et al., 2018; Mackay et al., 
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1 2018), and for total water storage anomalies from GRACE data (Fang and Shen, 2017). These 
2 examples demonstrate the continuing and expanding use of signature methods in hydrology.

3 2 APPLICATIONS OF HYDROLOGIC SIGNATURES

4 The following sections describe three main types of hydrologic signature applications: ecohydrology, 
5 watershed processes, and modelling (Figure 2). 

6

7 Figure 2. Summary of the three categories of hydrologic signature applications discussed in this paper 
8 (Eco-hydrology, Watershed Processes and Modelling), with cross-cutting methodological 
9 considerations.

10 2.1 Ecohydrology, environmental flows and hydrologic alteration

11 An important concept in ecohydrology is that the flow regime of a river controls channel and riparian 
12 habitat, and the suitability of the river to support freshwater species (Gordon, 2004). Flow velocity 
13 and its variability close to the streambed affects instream ecosystems via multiple mechanisms. 
14 Flows control bed sediments, nutrient levels, availability of refuges, and frequency of disturbance; 
15 and therefore control species dispersal, habitat use, resource acquisition, predator-prey interactions, 
16 and competition (Hart and Finelli, 1999).

17 Given the need to describe how flow characteristics impact stream ecology, ecohydrology was the 
18 first field to create catalogues of signatures that summarize the flow regime. Two foundational 
19 papers use signatures such as annual maximum flows and numbers of high and low flow events to 
20 characterise biologically-relevant flow attributes (Poff et al., 1997; Richter et al., 1996). Their 
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1 signatures emphasise the flow extremes – floods and low flows – that control channel shape and 
2 species survival. 

3 2.1.1 Environmental flows to preserve instream habitat

4 Stream habitat is influenced by multiple aspects of the flow regime. Flow variability, from 
5 milliseconds to decades, affects which species dominate the ecosystem (Biggs et al., 2005). For 
6 example, invertebrates may tolerate variability only above or below certain limits (Konrad et al., 
7 2008). Species may have very specific flow requirements, such as the endangered yellow-legged frog 
8 (Rana boylii) in California that relies on a consistent rate of river level fall in summer, allowing 
9 tadpoles to following the receding water’s edge (Bondi et al., 2013). Species requirements can be 

10 encoded as signatures, for example by quantifying flow variability, or frequency and duration of 
11 unacceptable flow conditions. To encompass all the flow attributes required to sustain a healthy 
12 ecosystem, water managers use the term “environmental flows” (Acreman, 2016). Methods to 
13 assess whether a river meets environmental flow requirements are diverse, but typically rely on 
14 hydrologic or hydraulic signatures to rate habitat suitability (Tharme, 2003). 

Species Periphyton and 
invertebrates 
(various species)

Mayfly (Baetis 
muticus, Baetis 
rhodani, 
Ecdyonurus 
venosus)

Rainbow trout 
(Oncorhynchus 
mykiss)

Yellow-legged frog 
(Rana boylii)

Signature Frequency of 
floods 3x the 
median flow

Flow Duration 
Curve 

Flow variability 
(coefficient of 
variation of flow)

Stage height 
recession rate

Explanation Relates to 
frequency of 
disturbance 
events

Relates to shear 
stress distribution 
that controls 
grazing behaviour

Low flow 
variability relates 
to cleaner water 
and larger food 
production area

Egg masses and 
tadpoles rely on 
steady fall of water 
level in summer

Reference Clausen and 
Biggs, 1997

Ceola et al., 2014 Jowett and 
Duncan, 1990

Bondi et al., 2013

15 Table 3: Four freshwater species highlighted in this article and the hydrologic signatures that help 
16 explain their abundance in instream environments.

17 To rate habitat suitability, hydrologists search for signatures that explain species abundance, and 
18 where ecosystem theory explains why those flows are needed (Table 3). This method needs 
19 measurements of species abundance at large numbers of sites. Commonly measured species include 
20 periphyton (streambed organisms such as algae), invertebrates, and fish species. For example, 
21 Jowett and Duncan (1990) analyse 130 sites in New Zealand and find that high flow variability is 
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1 negatively correlated with mean water velocity and relative bed stability, and positively correlated 
2 with trout habitat. Clausen and Biggs (1997) find that the ‘Fre3’ signature, i.e. the frequency of 
3 floods higher than three times the median flow, predicts periphyton and invertebrate density 
4 because Fre3 flows have sufficient energy to disturb sand and gravel riverbed sediments. Once a 
5 relationship between signatures and species is established, it can be used to predict basin-wide 
6 species distribution (Ceola et al., 2014).

7 For general environmental flow assessments, not aimed at one particular species, the best choice of 
8 signatures is less clear. Yarnell et al. (2020) propose a method based on “functional flows”, i.e. flow 
9 features that affect species lifecycles, such as fall pulse flows, spring recessions, and summer low 

10 flows. For each feature, signatures are selected corresponding to flow magnitude, timing, frequency, 
11 duration and/or rate of change. Online software is available to calculate these signatures in 
12 seasonal, Mediterranean climates (Patterson et al., 2020). Archfield et al. (2014) instead try to 
13 overcome subjectivity in signature choice by using their seven “fundamental daily streamflow 
14 statistics” for all rivers, including the moments of the flow series and descriptors of the seasonal 
15 cycle. Refer to the section “Choosing Signatures” for a wider discussion of the rationale for signature 
16 choice.

17 2.1.2 Detecting hydrological change

18 An important motivation for using signatures to quantify environmental flows is to understand how 
19 humans have altered river systems. Modified flows encourage invasive species, to the detriment of 
20 native species that rely on natural water levels, seasonal flow changes, and floodplain connectivity 
21 (Bunn and Arthington, 2002). Signatures can be compared before and after a hydrologic change, to 
22 quantify how disturbances such as dams, levees, urbanisation, afforestation or drainage change the 
23 flow regime (Archer and Newson, 2002; Poff et al., 1997). The widely-used ELOHA framework 
24 (Ecological Limits Of Hydrologic Alteration; Poff et al., 2010) uses signatures to classify rivers by flow 
25 and geomorphological regime, quantify flow changes from baseline conditions, and understand the 
26 ecological impacts of those changes.  

27 The most disruptive changes for instream ecosystems are depleted high flows, homogenization of 
28 flows and erratic flows (Carlisle et al., 2017) as well as artificially reduced flow that reduces water 
29 velocity, depth, wetted width and therefore habitat and species diversity (Dewson et al., 2007). 
30 Larger changes in flow magnitude always cause greater ecological change, but exact relationships 
31 between flow signatures and ecological change are place-specific (Poff and Zimmerman, 2010). Most 
32 studies analyse changes in flow magnitude (e.g. flow peaks, average flow, baseflow and daily 
33 variation), whereas changes in flow timing, frequency, duration and rate of change are less 
34 commonly studied.

35 Evaluating signature changes on a large scale can help to identify the underlying causes. Mahe et al. 
36 (2013) used signatures to describe decadal changes in the baseflow and flow variability of African 
37 rivers, and investigated the influence of climate, land use and other anthropogenic changes. As well 
38 as past changes, signatures can help summarise how flows may change in future. By calculating 
39 signatures from future flows predicted by coupled climate and hydrologic models, we can identify 
40 changes such as timing of the snowmelt peak or the duration of summer low flows (Hayhoe et al., 
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1 2007). Signatures are valuable to identify causes and impacts of flow regime changes, in the past and 
2 for the future.

3 2.2 Watershed Processes

4 While ecohydrology uses signatures to study how flow regime affects instream habitat, hydrologic 
5 process research uses signatures to study how the upstream watershed affects the flow regime. 
6 Using watershed attributes (e.g. soil, geology and topography) to predict flow signatures enables us 
7 to estimate flows and stream habitat in ungauged basins. To this end, many early signature papers 
8 describe relationships between watershed attributes and signature values (Jowett and Duncan, 
9 1990; Poff and Ward, 1989). It is also useful to reverse the inference and use flow signatures to 

10 predict watershed processes. Examples of process predictions could include whether overland flow 
11 occurs, or how connected is water in the hillslopes and channel. By using intensively studied basins 
12 to establish relationships between signatures and processes, we can transfer process knowledge to 
13 any watershed with a flow gauge (McMillan, 2020). The link between signatures and watershed 
14 processes is the basis for several applications described in later sections, such as using signatures to 
15 quantify similarity between watersheds, and evaluating physical realism of hydrologic models.

16 Sometimes the link between watershed processes and signatures is clear, such as when winter 
17 snowfall causes a spring snowmelt peak, or when karst geology causes high baseflow. McDonnell et 
18 al. (2007) argue that both watershed descriptors and hydrologic signatures should focus on how 
19 watersheds function. Currently, this is not the case and many signatures such as low flow 
20 frequencies are only weakly related to watershed function. A useful test of the relationship is how 
21 well signatures can be predicted from watershed attributes. Eng et al. (2017) tested 612 signatures 
22 and found that only 40% could be reliably predicted from U.S. watershed attributes. Signatures 
23 describing mean flows and high flows are typically well-predicted, while signatures describing low 
24 flows are poorly predicted (Addor et al., 2018; Eng et al., 2017; Zhang et al., 2014). 
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1

2 Figure 3: Comparison of the influence of catchments attributes (x axis) used to predict hydrological 
3 signatures (y axis) with a random forest method for 671 U.S. watersheds with minimal human 
4 influence. Large, brightly coloured circles imply strong correlations and high influence. The signatures 
5 are ordered with better predicted signatures at the top. The strongest relationships are between 
6 climate attributes and mean or high flow signatures, with topography, soils, vegetation and geology 
7 having low predictive power. Figure reproduced with permission from Addor et al. (2018)

8 A compelling explanation for differences in signature predictability is that climate descriptors (e.g. 
9 aridity, snow fraction) provide most of the predictive power, while watershed descriptors (e.g. soil 

10 type, forest cover, slope) provide little predictive power (Figure 3; Addor et al., 2018; Merz and 
11 Blöschl, 2009). Therefore, signatures that relate closely to climate characteristics are well predicted. 
12 At the seasonal scale, wet or impermeable watersheds transfer climate variability almost directly in 
13 hydrologic variability, explaining why seasonal, high flow signatures are more easily predicted 
14 (Gnann et al., 2020b). However, by focusing on situations where expert knowledge suggests that 
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1 hydrology is more important than climate, relationships can be uncovered. For example, watershed 
2 drainage pattern helps to predict flood signatures (Oppel and Schumann, 2020), and information on 
3 surface waterbodies helps to predict baseflow signatures (Beck et al., 2013). 

4 The weak relationship between watershed descriptors and signatures contradicts extensive field 
5 evidence that shows how watershed features control streamflow responses. Therefore, there is 
6 great potential to create new watershed descriptors that better characterize hydrologic behaviour 
7 and flow signatures (Gnann et al., 2020a). In turn, this would allow for better predictions of the flow 
8 regime in ungauged watersheds.

9 2.2.1 Defining similarity between watersheds

10 Analysing hydrologic similarity enables us to transfer information between similar watersheds. We 
11 might use insights from a similar watershed to design monitoring networks or models in a new 
12 watershed, or to estimate the impacts of land use or climate change (Wagener et al., 2007). Similar 
13 watersheds will have similar ecology and can benefit from similar conservation efforts and 
14 environmental flow regulations (Kennard et al., 2010). Similarity measures can also pick out 
15 watersheds that behave differently, such Australia and southern Africa that have more extreme 
16 flows relative to mean flow than on other continents (McMahon et al., 2007). Often, a similarity 
17 measure is used to define clusters (also called classes) of similar watersheds. Many generic 
18 clustering algorithms are available, such as hierarchical clustering, k-means clustering, or Bayesian 
19 mixture modelling (Jain et al., 1999). Using signatures as the similarity measure creates clusters that 
20 are hydrologically similar in terms of flow regimes, instream ecosystem and watershed processes. 
21 Although clustering can be based on physical watershed attributes instead (topography, land cover, 
22 etc), this produces substantially different groupings (Ali et al., 2012). 
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1 Figure 4: Flow regime classes for 830 stream gauges in Australia, clustered using 120 hydrologic 
2 signatures. The signatures describe mean and variance in the streamflow magnitude (average, low, 
3 high), frequency (low, high), duration (low, high), timing and rate of change. Note that some classes 
4 are geographically compact (e.g. 2) while some are dispersed (e.g. 12). Figure adapted from Kennard 
5 et al. (2010b).

6 Similarity in signatures implies a combination of climate similarity and process similarity. This creates 
7 clusters that are largely geographically compact (climate influence), but with some geographical 
8 spread (process influence). For example, Kennard et al. (2010b) use signatures to cluster Australian 
9 watersheds. They find compact clusters influenced by seasonal timing of flow, flood magnitude, and 

10 baseflow magnitude, but some outliers such as highly intermittent streams, which are driven more 
11 strongly by process and have a wide geographical distribution (Figure 4). Climate typically dominates 
12 clusters derived directly from signature similarity (Coopersmith et al., 2012; Sawicz et al., 2011). 
13 Therefore, Knoben et al. (2018) recommend separating climatic and hydrological similarity when 
14 deriving clusters. 

15 An alternative to signature-based clusters is to use climate or watershed descriptors to derive 
16 clusters, and look for similarities in signature values in each cluster. Climate-based clusters such as 
17 the Köppen–Geiger classes produce different patterns to signature-based clusters (Jehn et al., 2020). 
18 However, climate descriptors can be targeted towards creating hydrology-relevant clusters, by using 
19 descriptors such as aridity that is related to the water balance (Berghuijs et al., 2014). Instead of 
20 looking at signature values within in a cluster, a recent proposal is to use hydrological archetypes. 
21 These are graphs of the median annual hydrograph of all watersheds in the cluster, with upper and 
22 lower percentiles, giving an overview of the hydrological behaviour. These visual representations 
23 integrate the information in multiple signatures in an intuitive way (Lane et al., 2018).

24 An important application of hydrologic similarity is to estimate how vulnerable watersheds are to 
25 climate or land use change. We can already see the impacts of climate change on flow signatures, as 
26 watersheds move between clusters over time as their climate changes (Sawicz et al., 2014). When 
27 planning for future impacts, watersheds with similar signature values are assumed to react similarly 
28 to climate changes. We can predict future watershed behaviour using space-for-time substitution, 
29 i.e. looking for similar watersheds that already have climates similar to future predictions in the area 
30 of interest (Sivapalan et al., 2011).

31 2.3 Modeling

32 As signatures can quantify hydrologic function, it is a natural progression to use signatures in the 
33 pursuit of models that accurately represent hydrologic function. Signatures are used at all stages of 
34 the modelling process, from model structure selection, through calibration and evaluation.

35 2.3.1 Calibration

36 The first uses of signatures for modelling were for calibration. In calibration, parameters are 
37 adjusted manually or automatically to optimise model performance. Manual calibration procedures 
38 are often complex and link parts of the hydrograph to different parameters, for example using base 
39 flow periods to set base flow parameters (Boyle et al., 2000). Automatic calibration procedures are 
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1 usually simpler, aiming to optimise a performance measure. Performance measures are commonly 
2 based on the sum of squared errors between observed and modelled flows, such as the Nash-
3 Sutcliffe efficiency (Nash and Sutcliffe, 1970). However, these performance measures are criticised 
4 because they lack a clear link to hydrologic function, and so it is unclear which parameters should be 
5 changed to improve performance. By replacing the sum-of-squared errors measure with a measure 
6 composed of one or more signatures, we can maintain the link to watershed function in an 
7 automatic calibration procedure.

8 Drawing on manual calibration expertise, hydrologists have long incorporated flow regime 
9 signatures into automatic calibration. Sugawara (1979) used hydrograph volume and recession slope 

10 as performance measures, while Refsgaard and Knudsen (1996) combined flow duration curves and 
11 annual maximum flow signatures with NSE and visual comparison of hydrographs. Hogue et al. 
12 (2000) mimic a complex multi-objective manual approach in an automatic procedure, and signatures 
13 from multiple data sources can complement flow series during calibration (Hay et al., 2006; Hingray 
14 et al., 2010). More generally, Gupta et al. (1998) argue that multi-objective calibration is necessary 
15 given trade-offs between a model’s ability to match different parts of the hydrograph. Building on 
16 this, Gupta et al. (2008) state that given the high dimensionality of the data available for calibration 
17 and the model parameter space, this information should not be compressed into a one-dimensional 
18 performance measure. Instead, they recommend model calibration against multiple signatures, each 
19 related to specific parameters. Kavetski et al. (2018) name the approach “signature-domain 
20 calibration”, in contrast to “time-domain calibration”.

21 The call for model calibration using flow signatures was widely taken up, with several adaptations. 
22 Some studies use signatures to evaluate the modelled flow regime when data is scarce, or when 
23 precipitation and flow data are available for different time periods. These studies choose signatures 
24 that summarise the flow regime such as the flow duration curve (Westerberg et al., 2011) or spectral 
25 density of the flow signal (Montanari and Toth, 2007; Winsemius et al., 2009). 

26 Several studies use signature-based calibration to search for models that achieve “hydrologic 
27 consistency”, i.e. that reproduce multiple flow signatures (Martinez and Gupta, 2011; Pechlivanidis 
28 et al., 2014; Pokhrel et al., 2012; Sahraei et al., 2020; Shafii and Tolson, 2015). The hope is that these 
29 models provide a realistic representation of a range of hydrologic processes. For example, He et al. 
30 (2018) use signature-based calibration to produce stable and realistic model parameters in a 
31 glaciated basin, and Shafii et al. (2017) use signatures based on the L’vovich partitioning framework 
32 to create models with realistic partitioning between quick and slow flow, infiltration, and 
33 evapotranspiration. If the selected signatures capture all the information in the flow signal, they are 
34 referred to as “sufficient statistics”. 

35 The opposing view to sufficiency is that careful selection of signatures enables us to match some 
36 parts of the hydrograph, while ignoring parts that are less important or have known errors (e.g. 
37 timing errors). In this way, the user controls the weighting of different aspects of model 
38 performance. Signatures can focus the calibration on just one part of the hydrograph, such as high 
39 flows (Mizukami et al., 2019) or low flows (Pfannerstill et al., 2014). We can also calibrate a model 
40 using a structured approach, starting with signatures at annual or longer timescales, and progressing 
41 to shorter timescales (Shamir et al., 2005a). Note that none of the studies above apply signature 
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1 calibration in the way that Gupta et al. (2008) suggested – by matching signatures to individual 
2 parameters. A recent example that does achieve that type of calibration is a manual, signature-
3 based re-calibration of the distributed J2000 model (Horner, 2020). One reason that such studies are 
4 rare is that correspondences between parameters and signatures differ between watersheds, 
5 complicating transferability of the method (Guse et al., 2017).

6 When calibrating models against signatures, we often want to account for model uncertainties, to 
7 create probabilistic streamflow predictions. Many of the studies described above use approaches 
8 similar to the Generalized Likelihood Uncertainty Estimation framework (Beven and Freer, 2001). In 
9 this framework, simulations are accepted (and/or weighted) if the modelled signatures lie within 

10 some tolerance of the observed signatures. This approach has been criticized because it does not 
11 conform to a strict statistical definition of a likelihood function. More recently, the Approximate 
12 Bayesian Computation (ABC) technique has been proposed to calculate probabilistic parameter 
13 distributions without the need to compute a likelihood function. This is beneficial for signature-
14 domain calibration, as it would be difficult to create signature likelihood functions. Kavetski et al. 
15 (2018) provide clear guidance on how to apply ABC for signature-domain calibration, and Fenicia et 
16 al. (2018) investigate practical questions such as the impacts of number of signatures and length of 
17 data series, and the ability of signature-domain calibration to cope with model deficiencies.

18 2.3.2 Evaluation of Model Structure and Parameters

19 Signatures can be used to design hydrologic model structure, often in a multi-model framework such 
20 as FUSE (Clark et al., 2008) or SUPERFLEX (Fenicia et al., 2011). These frameworks offer a mix-and-
21 match approach to build a model from pre-designed components. In some cases, signature values 
22 can be directly mapped to model decisions, such that a given signature value implies a given model 
23 choice. For example, signatures based on flow, precipitation and soil moisture data were targeted at 
24 specific model decisions in the FUSE framework (McMillan et al., 2014, 2011), with model tests 
25 confirming the data analysis (Clark et al., 2011).

26 A model can be chosen from a set of possible structures, by running each one and evaluating its 
27 ability to reproduce multiple signatures (e.g. Gunkel et al., 2015). Here, signatures provide an 
28 independent test of whether the model is physically realistic. Example applications are to evaluate 
29 sequentially more complex SUPERFLEX models (Euser et al., 2013), to investigate why different 
30 models succeed in watersheds with different hydrologic characteristics (Kavetski and Fenicia, 2011), 
31 and to compare geology vs topography discretisations in a distributed model (Fenicia et al., 2016). 
32 Testing for realistic signature values helps avoid excessive model complexity where unrealistic 
33 parameter values compensate for one another (Hrachowitz et al., 2014), while retaining the 
34 complexity needed to reproduce streamflow dynamics (Farmer et al., 2003; Jothityangkoon et al., 
35 2001). Using signature evaluation to progress from simple, large scale models to more complex 
36 models including finer-grained processes embodies the ‘downward’ approach to model 
37 development proposed by (Klemeš, 1983). 

38 After a model is built and calibrated, it may still predict inaccurate flows. Analysis of how well the 
39 model reproduces different signatures can help identify which parts of the model are failing. This 
40 draws from previous studies that identify which model decisions influence which signatures. For 
41 example, Coxon et al. (2014) show which FUSE model decisions influence water balance and flow 
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1 duration curve signatures, across a range of watershed types from flashy to baseflow-driven. The 
2 baseflow parameterisation was usually the most influential. In karst systems, model storage 
3 constants in fast flow and groundwater reservoirs affect high and medium-flow flow duration curve 
4 slopes, respectively (Hartmann et al., 2013). Large differences in signature values between 
5 calibration and validation periods provide additional clues if the model struggles to reproduce 
6 changing dynamics (Jayathilake and Smith, 2019). A new use for signatures is to evaluate hydrologic 
7 models based on machine learning, such as LSTMs (Long Short-Term Memory networks). Signatures 
8 can assess predictive accuracy, and assess whether internal model components are physically 
9 meaningful, by testing whether watersheds that activate similar parts of the LSTM network have 

10 similar signature values (Kratzert et al., 2019). 

11 Given increasing interest in national- to global-scale hydrologic models, signatures are useful to 
12 diagnose how model performance varies, or how model structure needs adaptation, for diverse 
13 climates or environments. Global signature databases, such as the Global Streamflow Indices and 
14 Metadata archive of 30,000 basins, make this possible (Gudmundsson et al., 2018). In their 
15 comparison of 12 global hydrologic models, Beck et al. (2017) use signature-based evaluation to 
16 understand how models in different Köppen–Geiger climate regions perform in predicting water 
17 balance, flow magnitude, seasonal timing and flashiness. At national scale, McMillan et al. (2016) use 
18 signature-based evaluation to test how model performance varies with watershed area, wetness, 
19 and groundwater influence (Figure 5). Alternatively, signatures can be use to summarize which flow 
20 regimes are easy or difficult for models to simulate. In the U.K., Topmodel and PRMS were 
21 preferable for flashy watersheds (low Baseflow Index), while Sacramento model was preferred for 
22 groundwater-driven watersheds (high Baseflow Index) (Lane et al., 2019). After model structural 
23 changes, signatures can show which types of watersheds see an improvement. For example, 
24 Boer-Euser et al. (2016) test a new method to set model soil depth based on co-evolution theory 
25 that estimates plant rooting depth, and use signatures to evaluate its success across wet and dry 
26 watersheds. 

27

28 Figure 5: Model bias error when a national model is used to simulate three signatures (baseflow 
29 index, rising limb density, flow volume), using data from 485 watersheds in New Zealand. These 
30 graphs are used to test hypotheses about how model performance varies with watershed area. Bias 
31 in all three signatures is lower for large watersheds. Figure reproduced from McMillan et al. (2016).

32 2.3.3 Signature regionalisation for predictions in ungauged basins
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1 Hydrological signatures provide a powerful tool for predicting flow in ungauged basins. Previous 
2 methods relied on regionalizing model parameters – estimating parameters for the ungauged basin 
3 by transferring parameters from nearby or physically similar watersheds, or regressing parameter 
4 values on watershed attributes. However, these methods were often unsuccessful (Oudin et al., 
5 2008). Instead, signatures can be used in a three-part method (Figure 6): (1) Relate watershed 
6 attributes to signatures in gauged basins, using regression on watershed attributes, (2) Use that 
7 relationship to estimate (regionalize) signature values for the ungauged basin, (3) Use the 
8 regionalized signatures as a performance metric to calibrate a model for the ungauged basin. This 
9 method works because watershed attributes are more closely related to signatures than model 

10 parameters, and because signature regionalization is independent of the choice of model and model 
11 structural error. The method saw significant development and success during the Predictions in 
12 Ungauged Basins (PUB) decade (Hrachowitz et al., 2013; Wagener and Montanari, 2011).

13

14 Figure 6: Schematic illustration of how hydrologic signatures are used in regionalisation. Signatures 
15 are regionalised to an ungauged basin, and then those signatures are used to condition a hydrologic 
16 model for the ungauged basin.

17 Steady progress has been made in advancing the signature regionalization method. The choice of 
18 signatures is guided by research into which signatures vary more smoothly across space and are 
19 more accurately predicted from watershed attributes (Addor et al., 2018). The regionalization 
20 method has advanced from regression to machine learning methods such as artificial neural 
21 networks (Beck et al., 2015) or random forests (Prieto et al., 2019; Zhang et al., 2018). Many studies 
22 stress the importance of including uncertainty estimation at all stages of the process, from data 
23 uncertainty affecting the signature values (Westerberg et al., 2016), to using a probabilistic 
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1 regionalization model (Prieto et al., 2019), to retaining an ensemble of models that adequately 
2 predict the regionalized signatures (Yadav et al., 2007). 

3 The method can be scaled up globally, both for the signature regionalisation (Beck et al., 2015, 
4 2013), and the model calibration (Yang et al., 2019), and is particularly valuable in locations lacking a 
5 dense network of streamflow gauges (Kapangaziwiri et al., 2012; Ndzabandzaba and Hughes, 2017; 
6 Visessri and McIntyre, 2016). Where available, the regionalised signatures can be combined with 
7 local, expert knowledge of watershed dynamics (Bulygina et al., 2012; Kelleher et al., 2017) and 
8 previously regionalized signatures, e.g. the soil infiltration curve number, or Baseflow Index 
9 predicted from soil types in the UK (Almeida et al., 2016). Overall, regionalisation of signatures is a 

10 robust, generalizable tool for predictions in ungauged basins (Zhang et al., 2008).

11 3 METHODS IN USING HYDROLOGIC SIGNATURES

12 3.1 Choosing signatures 

13 So far, we have discussed generalised uses of hydrologic signatures. However, any application must 
14 choose which signatures to use. The choice of signatures is important to: (1) ensure individual 
15 signature accuracy and robustness; (2) create a complete and independent set of signatures; (3) 
16 choose signatures relevant to the specific application. We will discuss each in turn.

17 Individual signature choice (1) plays a role because there are often multiple signatures that capture a 
18 given aspect of the flow regime. For example, several common signatures quantify the frequency 
19 and duration of high flow events, using different thresholds to define “high flow” based on flow 
20 quantiles, or multiples of the mean or median flow. There are often additional choices in the 
21 signature definition, such as the data timestep to use (Westerberg and McMillan, 2015). To assist 
22 signature choice, Shamir et al. (2005b) recommend choosing signatures that are consistent, i.e. 
23 produce similar values for different time periods, and distinguishable, i.e. produce different values 
24 for watersheds with different hydrologic functioning. McMillan et al. (2016) extend these 
25 recommendations to five desirable signature properties, including low uncertainty, low sensitivity to 
26 measurement design and watershed scale, and ability to discriminate between different hydrologic 
27 responses. Schaefli (2016) adds that signatures used in model evaluation should have the 
28 discriminatory power to constrain the range of acceptable model parameters.

29 When choosing sets of signatures (2), the signatures should cover all required aspects of the 
30 watershed function, while limiting redundancy or overlap. Previous studies commonly select 
31 signatures to cover a range of flow behaviour (Westerberg et al., 2016), range of timescales (Sawicz 
32 et al., 2014), or range of watershed functions (Yilmaz et al., 2008); and may reuse previous sets of 
33 signatures (Coxon et al., 2014). A selection of 5-10 signatures to summarize the flow regime is typical 
34 (e.g. Euser et al., 2013). Redundancy can be avoided by calculating the correlation between 
35 signature values for a large set of watersheds, and selecting independent signatures with low 
36 correlations. Principal component analysis (PCA) is often used to identify combinations of signatures 
37 that explain a high proportion of variability between watersheds, while remaining relatively 
38 independent (Clausen and Biggs, 2000; Olden and Poff, 2003; Prieto et al., 2019). Avoiding or 
39 accounting for highly correlated signatures improves outcomes when conditioning models on the 
40 signature values (Almeida et al., 2016).
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1 When selecting signatures for an application (3) the choice of signatures can impact the data 
2 analysis, modeling or calibration outcomes. Preferred signatures may depend on location, and may 
3 need to be adapted when transferring between sites. For example, McMillan and Srinivasan (2015) 
4 adapt a signature describing runoff generation thresholds by adding the antecedent wetness 
5 condition as an extra predictor controlling runoff. In modeling, the best signatures to constrain the 
6 model predictions depend on the watershed characteristics (Coxon et al., 2014). Signatures 
7 describing the water balance constrained parameters more strongly in groundwater-dominated 
8 watersheds, while signatures describing timeseries dynamics and the flow duration curve 
9 constrained parameters more strongly in rainfall-driven watersheds. Choosing signatures that span 

10 the range of model function is important for calibration, for example choosing signatures based on 
11 the L’vovich partitioning framework can improve calibration results (Shafii et al., 2017).

12 3.2 Scaling

13 A little-explored aspect of flow signatures is how their interpretation changes with scale, and how 
14 signature values aggregate or change along a river network. For example, when two tributaries 
15 meet, how do signature values in the downstream reach relate to the values in the tributaries? In 
16 general, hydrologic function shows complex scaling behaviour: dominant processes often change 
17 with scale, and emergent behaviour at watershed scales is not easily modelled as the accumulation 
18 of smaller-scale behaviour (Blöschl, 2001). Signatures have the potential to identify scale-
19 independent dynamics, for example they have been used to identify soil moisture dynamics that are 
20 consistent beyond the small scale of soil moisture sensors (Branger and McMillan, 2019). In ecology, 
21 flow signatures are used to group watersheds into scale-independent classes according to their 
22 dynamics, before developing within-class relationships between flow alteration and ecological 
23 responses (Kennard et al., 2010b; Poff and Ward, 1989). However, signatures can sometimes be 
24 sensitive to scale, such as modelled future changes in signatures that depend on climate model scale 
25 (Maina et al., 2019; Mendoza et al., 2016).

26 There is limited information about whether relationships between flow signatures and watershed 
27 processes change with scale. Most of these relationships are derived from studies in small, 
28 experimental watersheds, and may not apply in large basins. Some signatures become less 
29 meaningful at larger scales where flow dynamics represent a mixture of upstream tributaries. For 
30 example, diurnal cycles in flow indicate snowmelt and evapotranspiration processes, but mixing out-
31 of-phase cycles from different tributaries blurs the signal. Faster water velocities preserve in-phase 
32 fluctuations throughout the stream network to produce strong cycles, but slower water velocities in 
33 the late summer cause out-of-phase fluctuations and weaker cycles (Wondzell et al., 2007).

34 Other processes show the same blurring of signature values with scale. At small scales, watershed 
35 aspect controls patterns of snowmelt and therefore creates differences in flow signatures, but these 
36 dynamics converge at larger scales as aspects average out (Comola et al., 2015). Similarly, when 
37 using isotopic signatures of water age, mean transit times tend to converge for larger watersheds 
38 that aggregate diverse upstream watersheds (Hrachowitz et al., 2010). For one standard method to 
39 determine water age based on seasonal tracer cycles in precipitation and streamflow, aggregation is 
40 a greater concern as mixes of tributary waters of different ages do not return the correct mean value 
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1 (Kirchner, 2016). However, using an alternative formulation for age calculation can reduce the 
2 aggregation bias (Danesh-Yazdi et al., 2017).

3 In some cases, downstream changes in signature values successfully provide information on how 
4 processes change with scale. For example, where diurnal cycles are preserved downstream, cycles 
5 with peaks later in the day suggest that the snowline is higher or further upstream (Lundquist and 
6 Cayan, 2002). Instead of blurring at larger scales, some processes become more complex as multiple 
7 flow sources enter a river. For example, recessions become more nonlinear as hillslope-scale, 
8 watershed-scale and riparian aquifer flows are added downstream (Clark et al., 2009; Harman et al., 
9 2009). Alternatively, the extent of blurring may indicate how model structure should change with 

10 scale, for example as thresholds between antecedent wetness and runoff generation weaken at 
11 large scales (McMillan, 2012). In summary, caution is advised when using signatures to understand 
12 processes at very different scales to those for which the signatures were developed. There remains 
13 great scope to use well-instrumented watersheds to study how relationships between signatures 
14 and processes change with scale, and to use signatures to more accurately understand upstream 
15 processes.

16 3.3 Uncertainties

17 Any signature calculated from hydrologic data is impacted by inherent data uncertainty. Sources of 
18 uncertainty in flow data occur in measurement techniques for individual gaugings, and in using those 
19 gaugings to create a stage-discharge rating curve (Kiang et al., 2018). Signatures using precipitation 
20 data are additionally subject to errors in interpolating that data to the watershed scale. All of the 
21 signature applications discussed in this paper – ecology and habitat assessment, process 
22 understanding and modelling – are affected by signature uncertainty. Ignoring uncertainty can lead 
23 to biased model parameters, unreliable predictions, and poor management decisions (McMillan et 
24 al., 2017, 2018; Renard et al., 2010). Therefore, to improve the reliability of these applications, 
25 uncertainty should be explicitly accounted for in the signature methods (Juston et al., 2012).

26 A general method for estimating uncertainty in a signature value is by using a Monte Carlo approach 
27 (Westerberg and McMillan, 2015). First identify the dominant sources of uncertainty in the 
28 underlying flow and/or rainfall data, perhaps by creating a perceptual model of uncertainty 
29 (Westerberg et al., 2017). Next, estimate the magnitude and distribution of each uncertainty 
30 component, using dedicated experiments or information from the literature. Repeatedly draw 
31 samples of each measurement (flow and/or precipitation) including uncertainty, and use the sample 
32 to calculate the signature. Using a large number of samples, aggregate the resulting signature values 
33 to find the estimated distribution of the signature: an example is shown in Figure 7, with signature 
34 uncertainties commonly exceeding ±20%. Mean and standard deviation of the signature can be 
35 calculated if needed. This process may in itself suggest methods for reducing the uncertainty. If 
36 extreme high flows are most uncertain due to out-of-bank events, then signatures might be adjusted 
37 to avoid those values., e.g. by adjusting the quantiles used to calculate the flow duration curve 
38 slope.
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1

2 Figure 7: Relative uncertainty in 11 hydrologic signatures caused by uncertainty in the stage-
3 discharge rating curve, for a watershed in New Zealand. The boxplot whiskers extend to the 5 and 95 
4 percentiles, and the box covers the interquartile range. Signatures are as follows: QMEAN = Mean 
5 flow, BFI = Base-flow index, SFDC = Slope of the normalised flow duration curve, QCV = Overall flow 
6 variability, QLV = Low-flow variability, QHV = High-flow variability, QAC = Flow autocorrelation, QHF 
7 = High-flow event frequency, QHD = High-flow event duration, QLF = Low-flow event frequency, QLD 
8 = Low-flow event duration. Figure reproduced from Westerberg and McMillan (2015).

9 Beyond uncertainty in rainfall and flow data, signature uncertainty can occur due to a short flow 
10 record (Kennard et al., 2010a), flow data that is only available at coarse temporal scales (Poff, 1996), 
11 and uncertainty in the precise method used to calculate the signature (Dralle et al., 2017). To 
12 estimate the signature uncertainty resulting from these factors, the flow time series can be split into 
13 (possible overlapping) subsamples and the signature calculated for each one to obtain a range or 
14 distribution of signature values (Schaefli, 2016; Vogel and Fennessey, 1994). A similar approach for 
15 data from multiple locations is to subsample the data in space (Blazkova and Beven, 2009).

16 Estimates of signature uncertainty should then be incorporated into signature applications. The 
17 applications discussed throughout this paper vary in their development of uncertainty methods. 
18 When using signatures to understand watershed processes, uncertainty has been recognised but not 
19 incorporated into our methods. Unquantified data uncertainty contributes to abrupt variations of 
20 signatures in space, and makes it harder to relate landscape characteristics with signature values 
21 (Addor et al., 2018). For eco-hydrologic assessment, uncertainty estimation has been incorporated 
22 into methods for detecting hydrologic change. Long streamflow records are needed to overcome 
23 natural variability and detect changes in the number and duration of exceedances of high- and low-
24 flow thresholds: 40-years for high flow, 60-year for low flow (Huh et al., 2005). The perceptual model 
25 of uncertainty sources is important: treatment of streamflow errors as random vs non-random can 
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1 make the difference as to whether deforestation-induced changes in a flow duration curve over time 
2 can be detected (Juston et al., 2014).

3 In modelling, signature uncertainty methods are more fully developed. When signatures are used for 
4 model evaluation, a ‘limits of acceptability’ approach is commonly used, where model runs are 
5 accepted if they simulate signature values within estimated uncertainty bounds (Blazkova and 
6 Beven, 2009). Model runs can be scored according to the size of model signature errors compared to 
7 the width of the uncertainty bounds (Westerberg et al., 2020). In signatures regionalization 
8 methods, uncertainty methods are common and were previously discussed in the section “Signature 
9 regionalisation for predictions in ungauged basins”. Accounting for uncertainty avoids over-

10 conditioning the regionalized model and produces more reliable results (Westerberg et al., 2016). 
11 When quantifying signature uncertainty for modelling applications, it is useful to check for 
12 unrealistic signature values. For example, unrealistic runoff ratio values may indicate errors in basin 
13 area or precipitation undercatch (Kauffeldt et al., 2013). These ‘disinformative’ data periods should 
14 be removed to prevent corruption of the modelling process (Beven and Westerberg, 2011). Given 
15 the significant potential for data errors in large-sample datasets such as from the Global Runoff Data 
16 Centre, this signature-based check provides valuable error identification.

17 4 SUMMARY AND CONCLUSIONS

18 Hydrologic signatures are metrics that extract and summarise the information contained in 
19 streamflow. They range from simple statistics of the flow series, to complex descriptors of flow 
20 dynamics that relate to watershed processes. Signatures are commonly categorised according to 
21 whether they describe the magnitude, timing, frequency, duration or rate of change of flow.

22 This review described three main areas of application for hydrologic signatures:

23 (1) Ecohydrology, environmental flows and hydrologic alteration. Signatures provide an easy way 
24 to summarise the flow regime of a river. The flow regime controls the suitability of instream habitat 
25 for different species, with flow extremes and flow variability being particularly important. Species 
26 requirements can be encoded as signatures that must lie in defined ranges. The signatures and 
27 ranges are determined by establishing relationships between signatures and species abundance 
28 across large numbers of sites. Using these relationships, changes in signatures over time describe 
29 how river environments have been altered, and how these changes impact freshwater species.

30 (2) Watershed Processes. Signature values are related to upstream watershed processes. By relating 
31 signatures to the occurrence and strength of different processes, we can transfer process knowledge 
32 between basins. Conversely, by relating watershed attributes to signature values via regression 
33 relationships, we can estimate flow regimes in ungauged basins. These regression relationships are 
34 strongest between climate-related attributes and signatures of mean and high flow magnitudes. 
35 Similarity in signature values is used to define clusters of hydrologically-similar watersheds, that can 
36 share strategies for designing monitoring networks or models, and might react similarly to land use 
37 or climate change.

38 (3) Modeling. Signatures are used as performance measures in calibration, to require models to 
39 reproduce components of flow dynamics that relate to watershed function. Multi-objective 
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1 calibration against a range of signatures is typical. These calibration methods incorporate 
2 uncertainty by allowing for errors in the signature values. Signatures can be used to create 
3 hydrologic models for ungauged basins, by regionalizing signatures based on their relationship with 
4 watershed attributes, and then using the signatures for calibration. Signatures are used to design 
5 and test model structure and complexity, which is particularly useful in global models where spatial 
6 differences in model structure may be necessary.

7 Extending from this wide range of signature applications, there remain multiple unsolved problems 
8 and avenues for development. In modelling, we lack thorough knowledge of the correspondences 
9 between model parameters and flow signatures, with therefore few examples where signature-

10 domain calibration reduces the dimensionality of parameterisation methods. It would be beneficial 
11 to design signatures with stronger relationships to watershed processes and model parameters, as 
12 current signatures typically relate to multiple processes (Gnann et al, 2020a). Overall, the ability to 
13 share and build on knowledge of signatures would be enhanced by greater consistency of signature 
14 choice between studies. Despite current limitations, new uses of signatures across different 
15 hydrologic data types and for data-rich applications in global modelling and machine learning, 
16 suggest an expanding role for signatures in hydrology.
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