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Abstract14

A catchment’s hydrological response is controlled by climatic forcing and by the land-15

scape through which water moves. Yet when we compare large samples of catchments,16

we often find climate to be the only good predictor of the hydrological response and a17

lot of variability is left unexplained. This contradicts extensive evidence from field and18

regional studies which shows the importance of catchment form (e.g. geology) on catch-19

ment hydrological processes, particularly on baseflow processes. We hypothesize that this20

is due to limitations in (a) the catchment attributes we use to inform our analyses and21

(b) the hydrological signatures we use to describe the hydrological response. To test these22

hypotheses we use a large sample of catchment data across the contiguous United States.23

By reviewing literature from several U.S. regions, we show that region-specific knowl-24

edge is underutilized in large sample studies. To organize the findings from these regions25

we propose and apply a framework based on standardized perceptual models. Informed26

by these perceptual models, we use both available and newly calculated catchment at-27

tributes to show that baseflow signature predictions can be improved regionally. Mul-28

tiple baseflow signatures are needed to better distinguish between different baseflow sources,29

such as the subsurface, surface water bodies, and snow. We conclude with pointing at30

potential future directions and argue that we should aim at a more systematic and hy-31

drologically motivated selection of catchment attributes and hydrological signatures.32

Plain Language Summary33

River flow dynamics are influenced by climate and by the landscape through which34

a river flows. However, when we investigate many river catchments using large scale datasets35

such as global maps, we often cannot find a link between river flow dynamics and land-36

scape characteristics (e.g. geology). We show (a) that such maps are often too general37

and do not describe aspects relevant for river flow dynamics, and (b) that we need to38

pay more attention to the metrics we use to quantify river dynamics. There is a wealth39

of information contained in articles and datasets focusing on the regional scale which we40

can and should make use of. Since such information is often very specific to a certain41

region, we propose a conceptual framework that facilitates the use of regional knowledge42

for comparison between different river catchments.43

1 Introduction44

A stream reflects the catchment it drains. Its mean discharge is mostly controlled45

by climatic forcing (Budyko, 1974), and so are many response characteristics at shorter46

time scales (Berghuijs et al., 2014; Knoben et al., 2018). Yet we see striking differences47

in the hydrological response from catchments forced by a very similar climate (Farvolden,48

1963; Tague & Grant, 2004; Pfister et al., 2017). These differences are typically attributed49

to differences in a catchment’s form, such as the underlying geology (e.g. Price, 2011).50

Especially the slow response of a catchment (e.g. baseflow, recessions) is thought to carry51

the signature of the subsurface in which water is stored and from which it is eventually52

released.53

Many studies could relate baseflow signatures to catchments attributes, such as soils54

(Boorman et al., 1995; Schneider et al., 2007; Santhi et al., 2008), geology (Farvolden,55

1963; Tague & Grant, 2004; Bloomfield et al., 2009; Pfister et al., 2017; Kuentz et al.,56

2017; Carlier et al., 2018), geology-vegetation groups (Lacey & Grayson, 1998), land use57

(Y. K. Zhang & Schilling, 2006), or topography (Santhi et al., 2008). A lot of that knowl-58

edge is, however, fragmented and place-specific (Beck et al., 2013). This is reflected in59

results from recent large sample studies (Beck et al., 2013, 2015; Addor et al., 2018); while60

climate indices were the dominant predictors of most hydrological signatures, baseflow61

signatures were harder to predict, and non-climatic catchment attributes (e.g. geology62

attributes) could not significantly improve these predictions.63
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So, why is it so difficult to link catchment attributes (catchment form) to hydro-64

logical response (catchment function), despite extensive evidence that these attributes65

are important? We might argue that every place is unique (Beven, 2000) and that syn-66

thesizing the diversity of catchments around the globe is impossible. There are, however,67

examples of hydrological similarity (e.g. Budyko, 1974; Berghuijs et al., 2014) which sug-68

gest that we can transfer knowledge across places through a comparative hydrology ap-69

proach (Falkenmark & Chapman, 1989). When we compare many catchments, it is im-70

portant to balance ”depth with breadth” (Gupta et al., 2014), and to acknowledge place-71

specific processes (uniqueness) within general theories (similarity). Bridging this gap be-72

tween the local and global scale is not just important for the advancement of our scien-73

tific understanding, but also for practical applications that require knowledge at regional74

scales (e.g. water resources management; Wagener et al., 2010).75

The main aim of this paper is to investigate the following question. Why have non-76

climatic catchment attributes shown limited explanatory power in recent large sample77

studies, even for hydrological signatures that are generally thought to be controlled by78

these catchment attributes (e.g. baseflow index; see Beck et al., 2013, 2015; Addor et al.,79

2018)? We hypothesize that this is due to limitations in:80

(a) the catchment attributes we use to inform our analyses, and81

(b) the hydrological signatures we use to describe the hydrological response.82

The input data (a), in particular non-climatic catchment attributes, might not re-83

flect the catchment characteristics that are regionally important, thus limiting their ex-84

planatory power. This might be because the resolution of the data is too coarse to cap-85

ture the relevant spatial variability, or because of imperfect upscaling methods (Addor86

et al., 2018). While some catchment attributes nominally represent soils or geology, they87

might not represent the relevant hydrological aspects of soils or geology (Beck et al., 2013).88

As discussed by Addor et al. (2018), sometimes catchment attributes are simply not (yet)89

available, even though they have shown to be important. Lastly, data uncertainty might90

complicate a linkage to the hydrological response even if an attribute is theoretically rel-91

evant (Beck et al., 2013, 2015; Addor et al., 2018, 2020).92

Hydrological signatures (b) that have limited discriminatory power (McMillan et93

al., 2017), or are highly uncertain (Westerberg et al., 2016), will be difficult to link to94

catchment attributes and hydrological processes (see also McMillan, 2020). For exam-95

ple, the baseflow index is not only associated with methodological uncertainty, but also96

with conceptual uncertainty as it lumps together various processes, such as lake outflow,97

snowmelt, and groundwater discharge (e.g. Parry et al., 2016; Stoelzle et al., 2020). There-98

fore, it is possible that catchment attributes, even if they were hydrologically relevant,99

will not be good predictors of such a signature.100

To address hypotheses (a) and (b) we review regionally relevant literature which101

we contrast with information contained in a large sample dataset. We use the CAMELS102

dataset (Newman et al., 2015; Addor et al., 2017) in our analysis, which consists of sev-103

eral hundred catchments in the contiguous U.S. (for a brief description see Section 2.3).104

The CAMELS dataset has been used in many recent studies (e.g. Addor et al., 2018; Kratzert105

et al., 2019; Jehn et al., 2020) and we deem it representative of many large sample datasets106

(for a recent review see Addor et al., 2020).107

As a way to better synthesize regionally relevant knowledge, we propose the use108

of standardized perceptual models of catchment function (see Black, 1997; Wagener et109

al., 2007). Standardized perceptual models offer a qualitative yet systematic way to com-110

municate our understanding of hydrological systems. We view these perceptual models111

as a first step to formalize the relationship between catchment attributes and hydrolog-112

ical signatures. Developing a perceptual model of a region might point at datasets worth113

collecting and allows us to synthesize and communicate soft information (e.g. expert knowl-114

–3–©2020 American Geophysical Union. All rights reserved.



manuscript submitted to Water Resources Research

Edwards 

Plateau

Ozarks

Prairie 

Pothole 

Region 

Surface water bodies

Great Lakes

Figure 1. Map of the contiguous U.S. indicating the approximate regions of the case stud-

ies. Note that some regions might be different to the whole region of the same name (e.g. Ap-

palachian Mountains). The map shows elevations and surface water bodies (data sources are

described in Section 2.3).

edge) in a more systematic way. These perceptual models will evolve continuously and115

may be updated (or rejected) as we learn about processes and places (see e.g.] McGlynn116

et al., 2002; Shanley et al., 2015). The perceptual model framework is introduced in more117

detail in Section 2.2.118

In summary, the aim of this paper is to demonstrate how limitations in input data119

and hydrological signatures can obscure relationships between catchment attributes and120

hydrological signatures. To organize the findings from different regions, we propose a frame-121

work based on perceptual models that enables a systematic comparison of attribute-signature122

relationships.123

2 Methods and Datasets124

2.1 Literature Review and Case Study Regions125

We argue that large scale datasets of catchment attributes must reflect deep, region-126

specific knowledge. Therefore, we selected eight contrasting U.S. regions where an ini-127

tial literature review has indicated that non-climatic catchment attributes influence the128

streamflow response (Neff et al., 2005; Zimmer & Gannon, 2018; Tague & Grant, 2004;129

Adamski et al., 1995; B. M. Woodruff & Abbott, 1979; Winter, 1999), shown in Figure130

1. In each region we explore regionally relevant literature, field knowledge and availabil-131

ity of datasets that characterize this knowledge but that have not previously been used132

in U.S.-wide approaches such as the CAMELS dataset.133

The literature review will be the basis of both our perceptual models (described134

in Section 2.2) and the catchment attributes (described in Section 2.3) that are used to135

better understand several baseflow signatures (described in Section 2.4). We found many136

references that have – to our knowledge – rarely been considered in this context; pos-137

sibly due to their local or regional scope, because they do not directly stem from hydrol-138

ogy (but from related fields such as geomorphology), or because they are scientific re-139

ports rather than journal papers. In particular, reports and datasets from the United140
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Figure 2. Overview of our methodological approach. The boxes correspond to Sections 2.1-

2.4, where the notations are defined. The Roman numerals indicate the order in which the steps

are carried out.

States Geological Survey (USGS) or State Agencies contain useful information about the141

places we investigate here. Figure 2 outlines our methodological approach, which is de-142

scribed in more detail in the upcoming sections.143

2.2 Perceptual Models144

As a way to formalize the relationship between catchment attributes and hydro-145

logical signatures we propose to use standardized perceptual models based on the frame-146

work of Wagener et al. (2007). Wagener et al. (2007) distinguish between forcing (incom-147

ing water and energy), catchment form (e.g. soils and geology), and catchment function148

(the actions of the catchment on the incoming water and energy). Catchment functions149

are further divided into partition, storage, and release. As water is partitioned into dif-150

ferent stores, and these stores release water in different ways, partition, storage, and re-151

lease depend upon each other and cannot be viewed in isolation. Nevertheless, they pro-152

vide a useful framework to organize our knowledge of catchment hydrological processes.153

Figure 3 shows a general perceptual model that gives an overview of the catchment func-154

tions we explore in this paper. This serves as a standard model that is adapted for each155

of the case studies shown in Figure 1) – an approach similar to the concept of hydrolog-156

ical landscapes (Winter, 2001). Drawing from the diagrammatic concepts of Falkenmark157

and Chapman (1989), we also try to approximately quantify the relative magnitude of158

the fluxes associated with the different catchment functions (e.g. release in the form of159

baseflow).160

2.3 Datasets161

2.3.1 CAMELS162

Hydro-meteorological data, catchment shapefiles, and catchment attributes are ob-163

tained from the CAMELS dataset (Newman et al., 2015; Addor et al., 2017). CAMELS164

includes daily precipitation P , potential evapotranspiration Ep (catchment-averaged forc-165

ing data are based on the Daymet dataset, one of three gridded precipitation products166

used in CAMELS; see Newman et al., 2015) and streamflow data Q, a wide range of catch-167

ment attributes, and catchment shapefiles for 671 mostly natural catchments (i.e. min-168

imal land use changes or disturbances, minimal human water withdrawals; Newman et169

al., 2015) in the contiguous United States. The catchment attributes from CAMELS that170

are used in this paper are summarized in Table 1.171
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Figure 3. Perceptual model framework following Wagener et al. (2007) applied to natural

baseflow processes, illustrating the catchment functions that control baseflow generation. The

width of the arrows indicates the amount of water partitioned into and released from different

stores. Note that this is not intended to represent any real catchment, but to serve as a general

overview. We show refined perceptual models for each of the case studies in Section 3.
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Table 1. Datasets used in this paper, both for visualization and analysis. ”Datasets in

CAMELS” refers to datasets in CAMELS that we use or refer to in this paper. Links to the

datasets are provided in the Supporting Information.

Dataset name Attributes Reference

CAMELS
Hydro-meteorological data
Catchment shapefiles
Catchment attributes

Newman et al. (2015); Addor et al. (2017)

Datasets in CAMELS

STATSGO Soil texture, soil depth Miller and White (1998)
GLiM Geological classes J. Hartmann and Moosdorf (2012)
GLHYMPS Geological permeability, porosity Gleeson et al. (2014)

Additional datasets

HydroSHEDS Digital elevation model Lehner et al. (2008)
Generalized Glacial Limit Lines Glacial areas National Atlas of the United States (2005)
Physiographic Divisions of the U.S. Physiographic provinces Fenneman and Johnson (1946)
USGS Geological Map Geological classes, age Horton et al. (2017)
Principal Aquifers of the U.S. Aquifer extents U.S. Geological Survey (2003)
MGS Sinkhole Points Sinkhole locations Missouri Geological Survey (2018)
TWDB Major Aquifers Major aquifer extents Texas Water Development Board (2020)
National Wetlands Inventory Surface water bodies U.S. Fish and Wildlife Service (2020)

2.3.2 Additional Catchment Attributes172

We use several datasets that are not (yet) contained in CAMELS. They are sum-173

marized in Table 1. We use these datasets to calculate new catchment attributes which174

are provided with this paper. Details on the calculation of catchment attributes can be175

found in the Supporting Information.176

2.4 Baseflow Signatures177

We use three baseflow signatures to characterize the slow response of a catchment:178

two different baseflow indices (BFIs), and the median recession exponent βm. These three179

signatures are correlated, but do provide independent information (see Supporting In-180

formation for details).181

2.4.1 Baseflow Indices182

Baseflow Qb is defined as the portion of streamflow Q that is derived from ground-183

water and other delayed sources (Hall, 1968; Smakhtin, 2001). Baseflow is typically quan-184

tified by the baseflow index (BFI), the ratio between mean baseflow Q̄b and mean to-185

tal streamflow Q̄.186

BFI =
Q̄b
Q̄

(1)

We estimate baseflow with the help of the smoothed minima method (UKIH method;187

Institute of Hydrology, 1980). The method is particularly sensitive to one parameter, the188

time window N over which the streamflow minima are calculated (default: N = 5 days).189

To address this problem, Stoelzle et al. (2020) calculated the BFI for a continuous range190

of time window values. They then used the obtained range of BFIs (which they termed191

Delayed Flow Index; DFI) to distinguish between different baseflow sources. We follow192

this idea and calculate two BFIs. A ”standard” BFI5 using a baseflow estimate Qb,5 ob-193

tained with a time window of 5 days; and a BFI90 using a baseflow estimate Qb,90 ob-194

tained with a time window of 90 days. BFI5 aims at separating events from inter-event195

baseflow and BFI90 aims at separating seasonal variations from more stable (multi-annual)196

baseflow. Increasing the value beyond 90 days has relatively little effect on the result-197
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ing BFI for most of the catchments analyzed here. Note that BFI90 is strongly corre-198

lated with the normalized 5% flow quantile Q5/Q̄ (Spearman rank correlation ρs = 0.95).199

2.4.2 Recession Exponent200

Recession analysis has been used extensively to quantify the drainage behavior of201

catchments (Brutsaert & Nieber, 1977; Roques et al., 2017; Jachens et al., 2020; Tashie202

et al., 2020). It is often assumed that the relationship between the rate of change of stream-203

flow and streamflow follows a power law.204

−dQ
dt

= αQβ (2)

where α and βm are parameters that can be obtained by fitting Eq. (2) to recession data.205

There are numerous methodological choices that can impact the resulting parameter val-206

ues (e.g. Stoelzle et al., 2013; Dralle et al., 2017; Jachens et al., 2020). We extract re-207

cession segments that are strictly decreasing (dQdt < 0), remove the first day, and only208

keep recession segments of 5 days or longer (Jachens et al., 2020). We calculate the deriva-209

tive dQ
dt by using the exponential time stepping scheme proposed by Roques et al. (2017).210

We then use a weighted least square regression approach to fit a line in log-log space to211

individual recession segments (for details see Roques et al., 2017). We use the median212

exponent βm to describe a catchment’s average recession behavior. We do not use the213

parameter α as it is strongly influenced by seasonal variations in catchment wetness and214

evapotranspiration (e.g. Dralle et al., 2015; Tashie et al., 2020).215

2.4.3 Visual Inspection of Hydrographs216

For each region, we show hydrographs to contrast catchments with a different hy-217

drological response. We use the two baseflow estimates Qb,5 and Qb,90 to divide the hy-218

drograph into fast flow and two baseflow components. Note that while we divide the hy-219

drograph into three parts, the value of BFI5 ”contains” BFI90, i.e. it resembles the com-220

monly used BFI (Institute of Hydrology, 1980). These two baseflow components do not221

necessarily relate to any single baseflow source (or hydrological process), but they are222

rather meant to emphasize differences in baseflow response between catchments. These223

hydrographs are complemented by perceptual models, as outlined in Section 2.2.224

3 Results225

In Section 2.2 we have introduced three catchment functions: partition, storage,226

and release. In the next sections, we explore the processes that control these functions227

in the regions shown in Figure 1. A summary is given in Table 2.228

3.1 Partition229

3.1.1 Soil and Sediment Texture Control Partitioning: Regions Cov-230

ered by Glacial Deposits231

Extensive parts of the north and north eastern U.S. were covered by ice during past232

glaciations. Glacial erosion and deposition have resulted in thick (tens to hundreds of233

meters) sediment layers covering the underlying bedrock (e.g. Larson & Schaetzl, 2001).234

We can distinguish between areas glaciated during the most recent glaciation (Wiscon-235

sin) and areas glaciated during earlier glaciations (Pre-Wisconsin; see Figure 4a). The236

border between these two areas (Wisconsin and Pre-Wisconsin) roughly aligns with the237

border between the Great Lakes Region and the Upper Mississippi Valley (see Figure238

1). Comparing these two regions shows that soil and sediment texture – rather than bedrock239

properties – control baseflow generation in glacial regions.240
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Table 2. Overview of catchment functions, corresponding regions, key catchment charac-

teristics, associated hydrological processes, and relevant datasets (see Table 1 for details on

the datasets). N/A indicates that we did not find suitable datasets. *Datasets contained in

CAMELS.

Function Regions Catchment characteris-
tics

Hydrological Processes Datasets

Partition Great Lakes Region,
Upper Mississippi Val-
ley

Soil and sediment tex-
ture, glacial history

Infiltration, groundwa-
ter discharge

STATSGO*, Gener-
alized Glacial Limit
Lines

Appalachian Mountains Soil stratigraphy Infiltration N/A
Storage Oregon Cascades Subsurface maturity

(volcanic rock)
Groundwater storage USGS Geological Map

Ozarks Plateau Subsurface maturity
(carbonate rock)

Groundwater storage USGS Geological Map,
MGS Sinkhole Points

Edwards Plateau Weathering characteris-
tics

Groundwater storage TWDB Major Aquifers

Release Ozarks Plateau, Ed-
wards Plateau

Losing/gaining streams Regional groundwater
flow

N/A

Prairie Pothole Region,
Florida

Lakes and wetlands Discharge from surface
water bodies

National Wetlands
Inventory

The contiguous U.S. Baseflow source (e.g.
snow)

Snowmelt, discharge
from surface water
bodies

Snow fraction*, Na-
tional Wetlands Inven-
tory

The U.S. part of the Great Lakes Region is dominated by glacial deposits such as241

till and unconsolidated sediments which often mask the underlying geology (Larson &242

Schaetzl, 2001). The hydrology of the region is strongly influenced by the composition243

of soils and sediments (i.e. the soil parent material; Neff et al., 2005; Y. Zhang et al., 2013;244

Naylor et al., 2016). Soils and sediments in the Great Lakes Region tend to be coarse,245

particularly in the regions that were located deep within the glaciated area (e.g. Michi-246

gan).247

While most parts of the Upper Mississippi Valley were glaciated in the past, they248

were not glaciated during the Wisconsin glaciation (see Figure 4a). During this ice-free249

period, meltwater and precipitation draining via the Upper Mississippi created a fluvial250

landscape (Bettis et al., 2008) with a more developed surface drainage network than in251

the Great Lakes Region. Soils and sediments in the Upper Mississippi Valley are finer252

than in the Great Lakes Region, with larger clay and silt contents and less sand.253

Soil and sediment texture are a key control on the hydraulic properties of the sub-254

surface, and thus affect recharge (Naylor et al., 2016) and baseflow (Neff et al., 2005).255

Sandy soils enable high infiltration rates and thus allow for a lot of recharge. Sandy aquifers256

provide a lot of groundwater discharge which can sustain continuous baseflow, but also257

allows for continuous recharge as subsurface saturation is less likely to occur. A sand-258

rich catchment is illustrated in Figure 4d,f which shows a perceptual model and a hy-259

drograph of a typical Great Lakes catchment. Finer soils with higher clay content limit260

infiltration as well as groundwater discharge, leading to a flashier response. A clay-rich261

catchment is illustrated in Figure 4c,e which shows a perceptual model and a hydrograph262

of a typical Upper Mississippi Valley catchment. Figure 4b shows that clay and sand frac-263

tion (STATSGO data contained in CAMELS) are a strong control on the hydrological264

response in catchments that were glaciated in the past. Since soils are strongly related265

to their parent material (Naylor et al., 2016), the soil classification will also reflect sed-266

iment texture and thus also characterizes deeper layers in these regions. Therefore, to267

predict baseflow signatures across the U.S., we should include catchment attributes that268

delineate previous glacial extents. If we want to characterize or model catchments in glacial269

areas, we should include information about soils and sediments rather than bedrock.270
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Figure 4. (a) Map of the glacial areas showing CAMELS catchments colored according to

BFI5 and two example catchments. (b) Scatter plot showing BFI5 as a function of clay and sand

fraction (ρs(BFI5, fclay) = −0.70; ρs(BFI5, fsand) = 0.68). Hydrographs of the two example

catchments with estimated baseflow components for (c) Cuivre River near Troy (Upper Missis-

sippi Valley; HU 5514500) and (d) Little River near Star (Great Lakes Region; HU 4074950).

Note that the y-axis is capped. Perceptual models for (e) catchments with high clay fractions

and (f) catchments with high sand fractions. The width of the arrows indicates the amount of

water relative to a normalized precipitation input.
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3.1.2 Soil Stratigraphy Controls Partitioning: The Appalachian Moun-271

tains in North Carolina272

The Appalachian Mountains in North Carolina consist of the Blue Ridge Moun-273

tains in the west, which transition into the lower Piedmont in the east (see Figure 5a).274

Both regions are underlain by a relatively old, complex mixture of different lithologies275

(predominantly metamorphic and classified accordingly in GLiM and thus CAMELS).276

Soils and bedrock are deep and highly weathered (Zimmer & Gannon, 2018). As the to-277

pography transitions from steep (Blue Ridge) to shallow (Piedmont), soils and uncon-278

solidated sediments become thicker. Yet despite having a deeper critical zone, Piedmont279

catchments generate less baseflow and Zimmer and Gannon (2018) hypothesized that280

this is due to continuous shallow impeding layers.281

In the Piedmont, continuous clay-rich impeding layers can lead to perched water282

tables and thus to a more flashy response. In the Blue Ridge Mountains, these imped-283

ing layers are less continuous and thus allow for more recharge. This is illustrated in Fig-284

ure 5d,f which shows perceptual models for both regions (following Zimmer & Gannon,285

2018). The corresponding hydrographs (Figure 5b,c) show a similar seasonal Qb,5 for both286

catchments, but the more stable baseflow component Qb,90 is almost absent in the Pied-287

mont catchment, indicating a lack of or disconnection from deeper storage. This agrees288

with Zimmer and Gannon (2018) who found that baseflow amounts in the Blue Ridge289

are larger and seasonally more stable. The hypothesized dominance of soil stratigraphy290

over soil texture in this region is supported by the fact that none of the soil textural at-291

tributes in CAMELS are strongly correlated with any of the baseflow signatures (ρs(BFI5, fclay) =292

−0.18; ρs(BFI5, fsand) = 0.15).293

In-depth regional studies such as Zimmer and Gannon (2018) can help to bridge294

the gap between the local and continental scale, and they can point out potentially use-295

ful datasets such as datasets that describe soil stratigraphy. The importance of soil stratig-296

raphy (e.g. impeding layers) and soil structure (e.g. macropores) has also been highlighted297

elsewhere (e.g. Price, 2011; Naylor et al., 2016; Fatichi et al., 2020), but there are cur-298

rently no readily available large scale datasets describing soil stratigraphy.299

3.2 Storage300

3.2.1 Subsurface Maturity of Volcanic Rock: The Oregon Cascades301

The western slopes of the Oregon Cascades can be divided into two main geolog-302

ical units, the Western Cascades and the High Cascades (Tague & Grant, 2004). While303

both are underlain primarily by volcanic rock, and classified accordingly in CAMELS,304

they differ markedly in their appearance and hydrology. The High Cascades consist of305

young and highly permeable volcanic rock. They have a poorly developed surface drainage306

system and drain primarily via the subsurface and springs. The Western Cascades are307

much older and deeply weathered. The landscape is steep, dissected, and there is an ex-308

tensive surface drainage network fed by shallow subsurface stormflow (Tague & Grant,309

2004; Jefferson et al., 2010). The general lithological category (volcanic igneous rock)310

is therefore not enough to understand the regional hydrology, and we need to understand311

the geomorphological evolution of the region and the maturity of the subsurface.312

The differences between Western and High Cascades are reflected in the hydrol-313

ogy of the streams draining them, with a flashier response in Western Cascade streams314

and a more damped response with sustained summer low flows in High Cascade streams315

(Tague & Grant, 2004; Tague et al., 2008; Jefferson et al., 2010). This can be seen in Fig-316

ure 6c-f, which shows perceptual models and hydrographs for two catchments primar-317

ily located in either the Western or the High Cascades. Note that both streams show two318

annual peaks, one in winter when precipitation is highest, and one in late spring due to319

snowmelt.320
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Figure 5. (a) Map of the Appalachian Mountains in North Carolina divided into physio-

graphic provinces showing CAMELS catchments colored according to BFI5 and two example

catchments. Hydrographs of the two example catchments with estimated baseflow components

for (b) Reddies River at North Wilkesboro (Blue Ridge; HU 2111500) and (c) Little River near

Star (Piedmont; HU 2128000). Note that the y-axis is capped. Perceptual models for (d) Blue

Ridge catchments and (e) Piedmont catchments. The width of the arrows indicates the amount

of water relative to a normalized precipitation input.
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We can classify the Oregon Cascades similar to Tague and Grant (2004) by using321

geological age data contained in the USGS geology map (more details can be found in322

the Supporting Information). We classify volcanic (igneous) rocks younger than 2 Ma323

(million years) as High Cascades, volcanic rocks older than 8 Ma as Western Cascades,324

and volcanic rocks between 2 Ma and 8 Ma as mixed. The resulting map is shown in Fig-325

ure 6a. Catchments in the High Cascades show higher BFI90 values, indicating sustained326

low flows. To show quantitatively how geologic age influences low flows, we extracted327

the mean age of each catchment’s geology from the USGS geology map, which is plot-328

ted against BFI90 in Figure 6b. We also show the corresponding snow fractions to point329

out that they do not cause the differences in BFI90. While the overall sample size is small330

(n = 12), particularly for the High Cascades, our results agree with many other stud-331

ies (e.g. Tague & Grant, 2004; Tague et al., 2008; Jefferson et al., 2010; Safeeq et al., 2013).332

This shows that a simple classification as volcanic rock is insufficient to characterize these333

catchments, but that accounting for the maturity of the landscape by means of geolog-334

ical age data can help to better link catchment geologic attributes to baseflow signatures.335

3.2.2 Subsurface Maturity of Carbonate Rock: The Ozarks336

The Ozarks are located primarily in Missouri, with smaller parts in Arkansas, Kansas,337

and Oklahoma. The Ozarks are underlain by different types of carbonate and other sed-338

imentary rock (Adamski et al., 1995), and they are classified primarily as carbonate rock339

in CAMELS. Literature about the Ozarks shows, however, that the region consists of340

different carbonatic units which differ in their age, composition, and degree of karstifi-341

cation, and thus their hydrology (Harvey, 1981; Adamski et al., 1995; Hays et al., 2016).342

To differentiate between the different aquifer units we make again use of the geological343

age data from the USGS geology map. We can divide the Ozark Plateaus aquifer sys-344

tem (delineated from the USGS Aquifer Map) into two units, one being older than 360345

Ma (the end of the Devonian, roughly resembling the Ozark aquifer) and one being younger346

than 360 Ma (roughly resembling the Springfield Plateau aquifer; Adamski et al., 1995;347

Hays et al., 2016), shown in Figure 7a.348

Catchments inside the aquifer system (blue area in Figure 7a) generate more base-349

flow than catchments outside the aquifer system. Within the aquifer system, catchments350

underlain by the Ozark aquifer (the hatched area in Figure 7a) generate the highest amounts351

of baseflow. This agrees with other studies which state that the dissolution of rocks and352

hence the degree of karstification is greater in the Ozark aquifer than in the Springfield353

Plateau aquifer (Harvey, 1981; Adamski et al., 1995; Hays et al., 2016). This difference354

is illustrated in Figure 7c-f, which shows hydrographs and perceptual models for two catch-355

ments underlain by the Springfield Plateau aquifer and the Ozark aquifer, respectively.356

The catchment underlain by the Ozark aquifer (Figure 7d,f) has a more stable baseflow357

component stemming from an extensive subsurface flow network. Figure 7f indicates an-358

other typical karst feature, namely groundwater flow between (surface) catchments. This359

is also common in the Ozarks (Kleeschulte, 2000; Mugel et al., 2009) and will be discussed360

in Section 3.3.1.361

Distinguishing between the different aquifer units allows us to better explain the362

hydrological response in this area. But we can go a step further by looking at typical fea-363

tures of mature karst landscapes such as springs and sinkholes (Harvey, 1981; Adamski364

et al., 1995). To assess the degree of karstification we extracted the number of sinkholes365

per catchment from a map of the Missouri Geological Survey. Figure 7b shows that sink-366

hole density strongly correlates with BFI5 for catchments in the Ozarks in Missouri. Sink-367

holes are therefore a useful and measurable surface feature that indicate subsurface ma-368

turity, which might be particularly useful in ungauged catchments. However, while other369

sinkhole datasets exist (e.g. for Florida), limited availability of good quality sinkhole data370

might limit this approach to certain regions (here Missouri).371
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Figure 6. (a) Map of the Oregon Cascades showing CAMELS catchments colored accord-

ing to BFI90 and two example catchments. Areas composed of igneous rock are overlain by

shades of gray indicating geological age. (b) Scatter plot showing BFI90 vs. mean geological

age (ρs = −0.68) with dots colored according to the snow fraction fsnow. Hydrographs of the

two example catchments with estimated baseflow components for (c) Quartzville Creek near

Cascadia (HU 14185900) and (d) Sandy River near Marmot (HU 14137000). Note that the y-

axis is capped. Perceptual models for (e) Western Cascade catchments and (f) High Cascades

catchments. The width of the arrows indicates the amount of water relative to a normalized

precipitation input.
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Figure 7. (a) Map of the Ozarks showing CAMELS catchments colored according to BFI5

and two example catchments. (b) Scatter plot showing BFI5 vs. sinkhole density (ρs = 0.92).

Hydrographs of the two example catchments with estimated baseflow components for (c) Turn-

back Creek above Greenfield (HU 6918460) and (d) Current River at Van Buren (HU 7067000).

Note that the y-axis is capped. Perceptual models for (e) Springfield Plateau catchments and (f)

Ozark aquifer catchments. The width of the arrows indicates the amount of water relative to a

normalized precipitation input.
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3.2.3 Erosion of Rocks with Different Weathering Characteristics: The372

Edwards Plateau373

The Edwards Plateau region in central Texas can be divided into the Edwards Plateau374

proper and the Texas Hill Country (Wilcox et al., 2007). They are bounded to the south-375

east by the Balcones Fault Zone which gave rise to high relief and has resulted in a com-376

plex geological structure. These regions roughly align with the aquifers of the Edwards-377

Trinity aquifer system obtained from the Texas Water Development Board, which are378

shown in Figure 8a. The Edwards-Trinity aquifer is the principal aquifer in the Edwards379

Plateau, the Trinity aquifer is the principal aquifer in the Hill Country, and the Edwards380

aquifer is the principal aquifer in the Balcones Fault Zone (Barker & Ardis, 1996). The381

regional climatic gradient (more humid in the east), differences in relief (higher in the382

east), as well as regional groundwater flows towards the east, have led to increased ero-383

sion towards the east, resulting in the dissected landscape of the Texas Hill country (B. M. Woodruff384

& Abbott, 1979; Barker & Ardis, 1996), shown in Figure 8a. This hydrogeological di-385

versity is not reflected in CAMELS, which classifies the whole region primarily as car-386

bonate rock.387

The Edwards-Trinity aquifer provides baseflow even during periods with little rain-388

fall. This is illustrated in Figure 8c,e which shows a hydrograph and a perceptual model389

for a catchment in the Edwards Plateau proper. In the Texas Hill country, the upper parts390

of the Edwards-Trinity aquifer have been eroded, exposing the Glen Rose formation which391

consists of a sequence of limestone and dolomitic beds with varying weathering poten-392

tials (Wilcox et al., 2007; C. M. Woodruff & Wilding, 2008). This leads to a stepped to-393

pography consisting of steep risers and flat treads. Wilcox et al. (2007) and C. M. Woodruff394

and Wilding (2008) have shown that the steep risers have deeper soils and weathered re-395

golith and thus act as stores and zones of subsurface flow, whereas the treads create more396

fast flow. This is illustrated in Figure 8d,f which shows a hydrograph and a perceptual397

model for a catchment in the Texas Hill Country. Storage in the steep risers only pro-398

vides intermittent baseflow, leading to an ephemeral flow regime.399

The difference between the Edwards Plateau proper and the Texas Hill country can400

be shown more quantitatively when the catchment fraction underlain by the Edwards-401

Trinity aquifer (delineated from the TWDB aquifer map) is plotted against BFI90 (Fig-402

ure 8b). Catchments outside the Edwards-Trinity aquifer have low to zero BFI90, whereas403

most catchments underlain by the Edwards-Trinity aquifer have a high BFI90. A few catch-404

ments that have a very low BFI90 also have a particularly low runoff ratio (indicated by405

light colors in Figure 8b), likely because they lose water in the Balcones Fault Zone. The406

Balcones Fault Zone acts as a major recharge zone for the confined aquifer in the south407

(B. M. Woodruff & Abbott, 1979; Schaller & Fan, 2009), which might explain the low408

BFI90 values of some catchments that extend into it (see Figure 8a). We therefore also409

need to account for groundwater losses and gains, which is discussed in Section 3.3.1. While410

the aquifer map of Texas contains useful information, it is also unique to the region and411

needs to be interpreted with the help of regional knowledge. A next step would there-412

fore be the integration of this knowledge into a more widely applicable classification (see413

discussion in Section 4.4).414

3.3 Release415

3.3.1 Losing and Gaining Catchments: The Ozarks and the Edwards416

Plateau417

Catchments are often regarded as closed systems, where incoming water leaves ei-418

ther via evapotranspiration or stream discharge. Groundwater discharge from or to neigh-419

boring (topographic) catchments is, however, common (Schaller & Fan, 2009; Fan, 2019).420

This is especially true for karst landscapes, such as the Ozarks Plateau (Kleeschulte, 2000;421

Mugel et al., 2009) or the Edwards Plateau (B. M. Woodruff & Abbott, 1979; Schaller422

–16–©2020 American Geophysical Union. All rights reserved.



manuscript submitted to Water Resources Research

E

Q

~
6
m

P

Losses to BFZ

E

Q

~
6

m

P
Partition

Storage

Release 

Soil
Weathered bedrock
Upper bedrock (Edwards)
Lower bedrock (Glen Rose)

Legend

Major Aquifers

Edwards-Trinity Plateau

Edwards BFZ

Trinity

BFI90

0 - 0.05

0.05 - 0.10

0.10 - 0.15

0.15 - 0.20

> 0.20

0 30 6015 km

(d) Hill Country, stepped topography, little storage

(f)

(e)

(a) Edwards Plateau

(c) Edwards Plateau, storage in Edwards-Trinity aquifer

(b)

Edwards 

Plateau 

proper
Hill Country

ρs = 0.74

Figure 8. (a) Map of outcrop areas of the Edwards-Trinity aquifer system showing CAMELS

catchments colored according to BFI90 and two example catchments. (b) Scatter plot showing

BFI90 vs. Edwards-Trinity fraction (the green area in (a); ρs = 0.74) with dots colored according

to the runoff ratio Q/P . Hydrographs of the two example catchments with estimated baseflow

components for (c) Frio River at Concan (HU 8195000) and (d) Onion Creek near Driftwood

(HU 8158700). Note that the y-axis is capped. Perceptual models for (e) Edwards Plateau catch-

ments and (f) Texas Hill Country catchments. The width of the arrows indicates the amount of

water relative to a normalized precipitation input.

–17–©2020 American Geophysical Union. All rights reserved.



manuscript submitted to Water Resources Research

& Fan, 2009). Since groundwater losses and gains can affect baseflow signatures (see Fig-423

ure 8b), we tried to estimate regional groundwater flows via the water balance (see Schaller424

& Fan, 2009) using actual evapotranspiration estimates from two different products: MODIS425

(Mu et al., 2011) and GLEAM (Miralles et al., 2011; Martens et al., 2017); details can426

be found in the Supporting Information. We did not use the resulting estimates as they427

do not conclusively agree with information on losing and gaining catchments we found428

in the literature (e.g. Kleeschulte, 2000; Mugel et al., 2009, for the Ozarks), likely due429

to uncertainty in all water balance components (see e.g. Khan et al., 2018, for actual evap-430

otranspiration). Instead we note that it will be important to obtain reliable estimates431

of regional groundwater flow to better understand baseflow signatures.432

3.3.2 Lakes and Wetlands: The Prairie Pothole Region and Florida433

Lakes and wetlands are important functional units of hydrological systems. There434

is currently no dataset that explicitly describes surface water bodies in CAMELS (there435

is only a soil attribute named ”water fraction”). If baseflow originates from surface wa-436

ter bodies, subsurface characteristics alone cannot explain the baseflow response. We ex-437

plore two regions, the Prairie Pothole Region and the state of Florida, both shaped by438

their surface water bodies yet located in different climate zones. Both regions show a sim-439

ilar and distinct combination of baseflow signatures which reflect wetland connectivity.440

The Prairie Pothole Region was formed by the last glaciation and the region (shown441

in Figure 1) aligns well with the boundaries of the Wisconsin glaciation (shown in Fig-442

ure 4). Potholes provide storage that buffers against floods and provides baseflow, usu-443

ally in connection with the shallow groundwater system (Winter, 1999; McLaughlin et444

al., 2014; Cohen et al., 2016; Ameli & Creed, 2017; Neff & Rosenberry, 2018). Fast sur-445

face connections occur only during large events and originate from wetlands near the stream.446

Slow subsurface connections originate from wetlands throughout the catchment, includ-447

ing geographically isolated ones (McLaughlin et al., 2014; Ameli & Creed, 2017). A per-448

ceptual model depicting the hydrology of the Prairie Pothole Region is shown in Figure449

9c. The corresponding hydrograph shown in Figure 9a lacks a very fast response, illus-450

trating the flood buffering effect of potholes. Baseflow is substantial but intermittent,451

which is indicated by a moderate BFI5 and very low BFI90. Recession exponents βm close452

to 1 – the lowest of all CAMELS catchments – indicate fast late recessions, reaffirming453

the intermittent nature of baseflow in this region. Wetland connectivity decreases dur-454

ing drying (both due to evapotranspiration and discharge), as deeper layers tend to be455

less permeable (Cohen et al., 2016), and hence the flow ceases once the water levels have456

dropped below permeable layers (fill and spill; Cohen et al., 2016).457

Florida is underlain by the Floridan aquifer system, a carbonate rock aquifer sys-458

tem that is confined by a clay rich layer in most places (Schiffer, 1998). This confining459

layer is overlain by unconsolidated sediments which make up the surficial aquifer sys-460

tem. Many lakes have developed from sinkholes, which mostly occur in places where thin461

or discontinuous sediment and clay layers expose the underlying carbonate rock. If the462

confining clay layer is intact, the Floridan aquifer system has limited influence on streams.463

This is the case for most of the CAMELS catchments in Florida, which lie almost ex-464

clusively in areas with thick sediment cover. In these catchments, hydrological connec-465

tivity is closely linked to the shallow aquifer system and depends on the thickness and466

hydraulic properties of soils and sediments (Schiffer, 1998; Winter, 1999). A perceptual467

model of such a catchment is shown in Figure 9d. Similar to the Prairie Pothole Regions,468

the corresponding hydrograph (Figure 9b) lacks a very fast response and baseflow is sub-469

stantial but intermittent.470

As lakes can have a strong impact on the hydrological response of a catchment, we471

need to include information on surface water bodies in large sample datasets (see also472

Beck et al., 2013). In the next Section 3.3.3, we show that the fraction covered by sur-473
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Figure 9. Hydrographs with estimated baseflow components for (a) Sheyenne River near

Cooperstown, North Dakota (HU 5057000), and (b) Blackwater Creek near Cassia, Florida (HU
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and (d) catchments in Florida. The width of the arrows indicates the amount of water relative to

a normalized precipitation input.

face water bodies (derived from the National Wetlands Inventory; U.S. Fish and Wildlife474

Service, 2020) can be used to distinguish between hydrologically different catchment groups475

(e.g. surface water dominated). But it is likely that more detailed information about wet-476

land type and wetland geographic distribution will help to better understand baseflow477

signatures in catchments influenced by surface water bodies.478

3.3.3 Release Characteristics of Different Baseflow Sources: Surface479

Water Bodies, Snow, and the Subsurface480

Baseflow can originate from different sources, but a single signature such as BFI5481

often cannot distinguish between these different sources. For example, substantial amounts482

of baseflow indicated by a moderate BFI5 can be found in many regions (e.g. Oregon483

Cascades, Edwards Plateau, Prairie Pothole Region, Florida). But a moderate BFI5 in484

conjunction with fast release dynamics indicated by a very low βm is very typical for the485

surface water dominated catchments of the Prairie Pothole Region and Florida (see Sec-486

tion 3.3.2). If a catchment attribute (e.g. rock type) is important for one but unimpor-487

tant for another baseflow source (e.g. groundwater storage and wetland storage), it might488

be difficult to link that attribute to a single signature such as BFI5. We therefore ex-489

plored the relationship between two signatures, BFI5 and βm, for different baseflow sources.490

We can divide the CAMELS catchments into three groups (McDonnell & Woods, 2004);491

catchments where water is primarily stored (a) in surface water bodies, (b) as snow, and492

(c) in the subsurface. To visualize how baseflow release dynamics are related to the amount493

of baseflow released, we plot the median recession exponent βm against BFI5, shown in494

Figure 10.495
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Prairie Pothole Region & Florida

Figure 10. Scatter plots of median recession exponent βm vs. BFI5 (ρs = 0.42 for all catch-

ments). Subplots show catchments where water is primarily stored in (a) in surface water bodies

(>1% of area classified as lake or wetland delineated from the National Wetlands Inventory;

ρs = 0.15 for the subgroup); (b) as snow (>30% precipitation falling as snow; ρs = 0.07); and (c)

in the subsurface (ρs = 0.72). Note that each catchment only belongs to one class, with surface

water bodies being the first criterion and snow being the second criterion. Note that the y-axis is

capped. Similar plots for other signature combinations are shown in the Supporting Information.

While many catchments in the Prairie Pothole Region and Florida show a similar496

combination of BFI5 and βm, there is no clear pattern for surface water dominated catch-497

ments in general (Figure 10a). The fact that BFI5 and βm form an uncorrelated point498

cloud shows that similar amounts of baseflow can be associated with very different base-499

flow dynamics and hence with different hydrological processes. Lakes and wetlands in-500

teract with local groundwater systems and are strongly influenced by seasonal climate501

and vegetation dynamics (Winter, 1999). Therefore, we will need to better understand502

these complex, typically regional processes to understand the relationship between sur-503

face water bodies and baseflow beyond the case studies shown here.504

Snow dominated catchments (Figure 10b) form a relatively distinct point cloud with505

high BFI5 values and comparatively low βm values. This is probably a consequence of506

the seasonal nature of snowmelt, which only provides baseflow for a few months in spring507

and summer. For example, catchments in the High Cascades (Figure 6d) show lower βm508

values than catchments in regions with similarly significant subsurface storage such as509

the Ozarks (Figure 7d). As the partitioning of snowmelt will also depend on the sub-510

surface, understanding baseflow processes in snow dominated regions requires the inclu-511

sion of both snow and groundwater processes (e.g. Tague & Grant, 2004; Safeeq et al.,512

2013).513

In catchments where water is primarily stored in the subsurface, BFI5 and βm are514

strongly correlated (Figure 10c). High baseflow amounts (high BFI5) are mostly asso-515

ciated with slow late recessions (high βm), i.e. stable low flows. This can be seen in many516

of our case studies, such as the Great Lakes Region (Figure 4d), the Appalachian Moun-517

tains (Figure 5c), or the Ozarks (Figure 7d). The remaining variability indicates that518

also for this subgroup, similar amounts of baseflow can be associated with different base-519

flow release dynamics, possibly related to different geological settings.520
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4 Discussion521

4.1 Region-Specific Knowledge is Underutilized in Large Sample Stud-522

ies523

Large scale catchment attributes often do not reflect region-specific hydro(geo-)logical524

knowledge. But a wealth of – currently underutilized – region-specific qualitative and525

quantitative information exists and it can help us to better understand the link between526

catchment attributes and baseflow processes. The case studies shown here are not lim-527

ited to single catchments, but often describe states or larger regions. This suggests that528

a better characterization of both surface and subsurface properties will also improve our529

understanding at the continental and global scale. Finding this information requires a530

creative and open search, including journal articles from related fields (e.g. geomorphol-531

ogy), articles from regional journals, grey literature such as technical reports from agen-532

cies (e.g. USGS), as well as communication with experts. While these additional infor-533

mation sources come with limitations such as a lack of external review, they proved very534

useful and – based on our judgment – are often of similar quality as externally reviewed535

academic literature. Synthesizing and sharing this information requires a systematic ap-536

proach, and here we have proposed and applied a framework based on standardized per-537

ceptual models.538

Standardized perceptual models offer a means to formalize the relationship between539

catchment attributes and hydrological signatures. They have the advantage that they540

allow us to share qualitative or place-specific information in a systematic way (see Wa-541

gener et al., 2020). We can use perceptual models to state explicitly how we think a sys-542

tem works, and this can then be developed into a testable hypothesis (c.f. Winter, 2001).543

If a postulated relationship between a hydrological signature and a catchment attribute544

is not supported by data, we can either reject (or revise) our perceptual model, or try545

to find other, more relevant data or updated, potentially improved datasets (see Figure546

2). Of course, perceptual models are (by definition) subjective and some disagreement547

will be inevitable. But disagreement can be a useful starting point for progress, and the548

continuous refinement (or rejection) of these models should be seen as a learning pro-549

cess about processes and places (c.f. Beven, 2007).550

4.2 Multiple Baseflow Signatures Are Needed to Distinguish Between551

Different Baseflow Sources552

Baseflow is typically defined as the portion of streamflow that is derived from ground-553

water and other delayed sources (Hall, 1968; Smakhtin, 2001). But baseflow signatures554

such as the BFI are often used without explicitly linking them to different baseflow sources.555

This is problematic as transferring information in both space and time requires knowl-556

edge about the processes that generate baseflow. For example, if we want to assess the557

impact of warmer temperatures on baseflow, we need to understand how that affects both558

snow and groundwater processes (e.g. Safeeq et al., 2013). Figure 10 shows how differ-559

ent sources of baseflow can lead to very different dynamics, even if the estimated amount560

of baseflow (quantified by BFI5) is the same. In many catchments, the stable baseflow561

component BFI90 shows a much clearer link to geological characteristics than BFI5 (e.g.562

in the Oregon Cascades, see Figure 6). The combination of different signatures as well563

as meaningful subgroups can help us to explicitly link baseflow signatures to hydrolog-564

ical processes. This might also help us to identify relationships between baseflow signa-565

tures and geology that are otherwise hidden.566
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4.3 Limitations: Data Uncertainty and Hydrological Signature Selec-567

tion568

An advantage of large sample hydrology is that regional patterns make it less likely569

to draw wrong conclusions based on a few anomalous catchments (Gupta et al., 2014).570

At the same time, data errors can hide patterns if a hydrological signature is sensitive571

to these errors (Westerberg & McMillan, 2015). This applies both to catchment attributes572

(Addor et al., 2018, 2020) and hydro-meteorological data (Westerberg & McMillan, 2015).573

For example, regional groundwater flow can affect hydrological signatures (e.g. Figure574

8b). But uncertainty in all hydro-meteorological data, particularly in actual evapotran-575

spiration, makes it very difficult to quantify this effect. This substantiates the need for576

uncertainty estimates which large sample datasets often lack (c.f. Addor et al., 2020).577

We have limited our analysis to three signatures: BFI5, BFI90 and βm. This is just578

one possible set of signatures and they will not capture the whole range of baseflow pro-579

cesses. For example, a wider range of BFI values as suggested by Stoelzle et al. (2020)580

might lead to a more refined characterisation of the slow response of different catchments.581

Furthermore, analyzing seasonal differences in both baseflow and recession behavior might582

reveal more about the influence of climatic and topographic boundary conditions on the583

storage-discharge relationship (e.g. Zimmer & Gannon, 2018; Tashie et al., 2019). The584

baseflow estimation and the recession analysis are also associated with methodological585

uncertainty (e.g. Stoelzle et al., 2013; Dralle et al., 2017). We did not perform an ex-586

tensive comparison of different signature calculation methods, but we compared the sig-587

nature calculation methods used here with a few alternative methods (Lyne & Hollick,588

1979; Brutsaert & Nieber, 1977); details can be found in the Supporting Information.589

4.4 Next Steps590

4.4.1 Viewing Catchments as Systems with a History591

We have seen many examples where the geomorphological history of a region does592

not just give us a glimpse into why a place is like it is, but also provides useful informa-593

tion that is hard to observe directly. The volcanic Cascades evolve from being almost594

entirely groundwater dominated towards having an efficient surface drainage network (Jefferson595

et al., 2010). The carbonatic Ozarks evolve in the other direction, as the self-perpetuating596

dissolution of carbonate rock leads to an increasingly efficient subsurface drainage net-597

work (Adamski et al., 1995; A. Hartmann et al., 2014). The Edwards Plateau might be598

placed somewhere in between. There is an extensive karst network below the ground,599

yet at the same time surface erosion has carved an extensive surface drainage network600

into the landscape (B. M. Woodruff & Abbott, 1979). In glacial areas, we can see the601

imprint of the glacial history in form of sediment composition, but also in form of flu-602

vial erosion induced by glacial meltwater (e.g. Upper Mississippi). The hydrology of the603

Appalachian Mountains can be better understood by understanding the evolution and604

thus the architecture of their critical zone (Zimmer & Gannon, 2018). Whether these605

results are transferable remains to be explored. But we renew the argument that by view-606

ing catchments as systems with a history we might be able to learn more about their present607

state, and perhaps about how they will evolve in the future (Harman & Troch, 2014; Troch608

et al., 2015). This does not necessarily imply a long history of co-evolution, as the his-609

tory of a catchment can be shaped by events (faulting, glaciation; see e.g. Beven, 2015)610

and more recently increasingly by humans (Wagener et al., 2010)611

4.4.2 Challenges for a Geological Classification at the Continental Scale612

We have shown examples where a better characterization of geological character-613

istics allows us to better explain the hydrological response at the regional scale. When614

extending this approach to larger scales, we will face several challenges. First, we need615
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to merge the diverse regional classifications into a coherent framework that reflects this616

diversity while being general enough to be useful. Second, we need to translate quali-617

tative information such as rock type into quantitative hydrological properties or indices.618

Third, we need to account more explicitly for different climatic conditions as both long-619

term and short-term climatic conditions vary. For example, seasonal variability can af-620

fect baseflow (Zimmer & Gannon, 2018) and recessions (Tashie et al., 2019), and thus621

complicate the linkage between static catchment attributes and hydrological signatures.622

Similarly, differences in topography can affect recharge and hydraulic gradients, and this623

can alter the hydrological response even if the hydraulic properties of the subsurface stay624

the same (Carlier et al., 2019). At the same time, topography is related to hydrologi-625

cally relevant properties of the subsurface itself (e.g. fractures; St. Clair et al., 2015; Prance-626

vic & Kirchner, 2019). Disentangling these different, potentially co-varying processes is627

challenging (Price, 2011), but we will have to explicitly address them if we aim at a ge-628

ological classification at the continental scale.629

4.4.3 How Much Regional Information Do We Need to Predict Base-630

flow Response at the Continental Scale?631

Our results suggest that the amount of regional information required to arrive at632

acceptable continental scale predictions depends both on the spatial scale and on the re-633

gions covered. We started by delineating different regions which typically covered large634

fractions of a state and sometimes multiple states (≈ 104–105 km2). In some regions,635

a single attribute that characterizes the subsurface could explain most of the variabil-636

ity in baseflow response (e.g. sinkhole density in the Ozarks, see Figure 7b). In other re-637

gions, more information is required, especially if baseflow originates from multiple sources638

(e.g. wetlands and groundwater, see Section 3.3.3). Continental scale predictions will re-639

quire attributes that characterize all sub-regions (even though some of the attributes might640

only be used for some regions).641

One way to approximately specify the necessary level of detail for each region would642

be a simple classification of the main components of our hydrological system, i.e. an ini-643

tial perceptual model. We might start with the three groups presented in Section 3.3.3644

and distinguish between water that is stored in surface water bodies, as snow, and in the645

subsurface (McDonnell & Woods, 2004). If water is primarily stored in the subsurface,646

we might then further distinguish between storage in soils, sediment layers, weathered647

bedrock, etc. Such a classification could be informed by using previous glacial extents648

(see Section 3.1.1) or by a geomorphological classification (e.g. an upland vs. lowland649

classification, see Pelletier et al., 2016).650

4.4.4 How Can Our Results Help to Understand and Predict Change?651

In this paper we have focused on understanding current baseflow response in mostly652

natural catchments. This is a crucial first step, but ultimately we are also interested in653

understanding and predicting the hydrological response under change. If we better un-654

derstand the drivers of baseflow generation, we can use this understanding to assess how655

these individual drivers and the corresponding attributes respond to change, e.g. when656

forced by a different climate. Some attributes will be directly impacted by change (e.g.657

wetland extent, snow cover). Other attributes are mostly static themselves (e.g. geolog-658

ical attributes), but their interaction with climatic forcing controls key hydrological pro-659

cesses (e.g. groundwater storage). Human impacts can be an additional driver of base-660

flow response and might be assessed by including attributes that characterize human in-661

terventions (e.g. land use changes; Y. K. Zhang & Schilling, 2006).662

Models that credibly predict change need to adequately represent the dominant hy-663

drological processes and ideally both model structure and model parameters should be664

informed by process understanding rather than calibration (Sivapalan, 2005; Kirchner,665
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2006; Clark et al., 2017). By linking baseflow response to catchment attributes via per-666

ceptual models, our results could provide guidance on model building and a means to667

appraise model realism (c.f. Fenicia et al., 2014). By showing that CAMELS catchment668

attributes do not contain all hydrologically relevant information, we also show that we669

need better attributes if we want to identify model structures or parameter values based670

on catchment attributes. This is reinforced by a recent model intercomparison study us-671

ing the same dataset which did not find a relation between model structures and static672

catchment attributes (Knoben et al., 2020).673

5 Concluding Remarks674

In the introduction, we asked why non-climatic catchment attributes have shown675

limited explanatory power in recent large sample studies. We hypothesized that this is676

due to limitations in (a) the input data we use to inform our analyses, and (b) the hy-677

drological signatures we use to describe the hydrological response. So what have we learned?678

(a) We have found that region-specific knowledge is underutilized in large sample679

studies. There are many sources of information that can help us to better understand680

regional hydrological processes, and a key challenge will be to synthesize this informa-681

tion in a useful way. We suggest that this is best done through a common framework un-682

derpinned by perceptual models (i.e. ”perceptual models of everywhere”, cf. Beven, 2007).683

(b) It is important to pay attention to the hydrological signatures we use, and we684

should try to explicitly link them to hydrological processes. We have shown that the use685

of multiple baseflow signatures – instead of a single BFI – and meaningful catchment sub-686

groups allows us to better distinguish between different baseflow sources. A thoughtful687

choice of signatures will be crucial to meaningfully assess whether a catchment attribute688

is hydrologically relevant.689

We conclude that we will be able to better link hydrological signatures to catch-690

ment attributes if we aim at a more systematic and hydrologically motivated selection691

of catchment attributes and hydrological signatures.692
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